Phase angle compensation control strategy for low voltage ride through of doubly-fed induction generator

Author(s):  
W. Wang ◽  
N. Chen ◽  
L.Z. Zhu ◽  
D.G. Xu
2014 ◽  
Vol 707 ◽  
pp. 329-332
Author(s):  
Li Ling Sun ◽  
Dan Fang

As the number of doubly fed induction generator (DFIG)- based wind-turbine systems continues to increase, wind turbines are required to provide Low Voltage Ride-Through (LVRT) capability, especially under the condition of grid voltage dips. This paper, depending on the operating characteristics of doubly-fed induction generator during grid faults ,deals with a protection and control strategy on rotor-side converter (RSC) to enhance the low voltage ride through capability of a wind turbine driven doubly fed induction generator (DFIG). The simulation and experiment studies demonstrate the correctness of the developed model and the effectiveness of the control strategy for DFIG-based wind-turbine systems under such adverse grid conditions.


Author(s):  
Youness Boukhris ◽  
Aboubakr El Makrini ◽  
Hassan El Moussaoui ◽  
Hassane El Markhi

<span lang="EN-US">Based on the advantages of doubly fed induction generator (DFIG)-based wind turbine (WT). This paper proposes a new control strategy to improve the ride-through capability of DFIG-based WTs in the event of a grid fault. The proposed method is performed by using the DFIG converters control and the addition of the damping resistances connected to the DC circuit, to follow the requirements defined by the grid codes. The proposed ride-through solution limits the peak values of the DC link voltage, the rotor inrush current, electromagnetic torque and DFIG transient response at the times of occurrence and clearing the fault. The proposed solution is simulated and compared with the crowbar solution using MATLAB/Simulink environment.</span>


Sign in / Sign up

Export Citation Format

Share Document