scholarly journals Sensor network scheduling for identification of spatially distributed processes

Author(s):  
Dariusz Ucinski
Author(s):  
Dariusz Uciński

Sensor network scheduling for identification of spatially distributed processesThe work treats the problem of fault detection for processes described by partial differential equations as that of maximizing the power of a parametric hypothesis test which checks whether or not system parameters have nominal values. A simple node activation strategy is discussed for the design of a sensor network deployed in a spatial domain that is supposed to be used while detecting changes in the underlying parameters which govern the process evolution. The setting considered relates to a situation where from among a finite set of potential sensor locations only a subset of them can be selected because of the cost constraints. As a suitable performance measure, theDs-optimality criterion defined on the Fisher information matrix for the estimated parameters is applied. The problem is then formulated as the determination of the density of gauged sites so as to maximize the adopted design criterion, subject to inequality constraints incorporating a maximum allowable sensor density in a given spatial domain. The search for the optimal solution is performed using a simplicial decomposition algorithm. The use of the proposed approach is illustrated by a numerical example involving sensor selection for a two-dimensional diffusion process.


Author(s):  
Dariusz Uciński ◽  
Maciej Patan

Sensor network design for the estimation of spatially distributed processesIn a typical moving contaminating source identification problem, after some type of biological or chemical contamination has occurred, there is a developing cloud of dangerous or toxic material. In order to detect and localize the contamination source, a sensor network can be used. Up to now, however, approaches aiming at guaranteeing a dense region coverage or satisfactory network connectivity have dominated this line of research and abstracted away from the mathematical description of the physical processes underlying the observed phenomena. The present work aims at bridging this gap and meeting the needs created in the context of the source identification problem. We assume that the paths of the moving sources are unknown, but they are sufficiently smooth to be approximated by combinations of given basis functions. This parametrization makes it possible to reduce the source detection and estimation problem to that of parameter identification. In order to estimate the source and medium parameters, the maximum-likelihood estimator is used. Based on a scalar measure of performance defined on the Fisher information matrix related to the unknown parameters, which is commonly used in optimum experimental design theory, the problem is formulated as an optimal control one. From a practical point of view, it is desirable to have the computations dynamic data driven, i.e., the current measurements from the mobile sensors must serve as a basis for the update of parameter estimates and these, in turn, can be used to correct the sensor movements. In the proposed research, an attempt will also be made at applying a nonlinear model-predictive-control-like approach to attack this issue.


Automatica ◽  
2021 ◽  
Vol 127 ◽  
pp. 109498
Author(s):  
Takuya Iwaki ◽  
Junfeng Wu ◽  
Yuchi Wu ◽  
Henrik Sandberg ◽  
Karl Henrik Johansson

2014 ◽  
Vol 538 ◽  
pp. 498-501 ◽  
Author(s):  
Ming Zhe Qu

A wireless sensor network (WSN) consists of spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature, sound, pressure, etc. and to cooperatively pass their data through the network to a main location. The more modern networks are bi-directional, also enabling control of sensor activity. The development of wireless sensor networks was motivated by military applications such as battlefield surveillance; today such networks are used in many industrial and consumer applications, such as industrial process monitoring and control, machine health monitoring, and so on. The WSN is built of "nodes" – from a few to several hundreds or even thousands, where each node is connected to one (or sometimes several) sensors. Each such sensor network node has typically several parts: a radio transceiver with an internal antenna or connection to an external antenna, a microcontroller, an electronic circuit for interfacing with the sensors and an energy source, usually a battery or an embedded form of energy harvesting.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mukter Zaman ◽  
H. Y. Wong ◽  
Md. Shabiul Islam ◽  
Nowshad Amin

Profiling environmental parameter using a large number of spatially distributed wireless sensor network (WSN) NODEs is an extensive illustration of advanced modern technologies, but high power requirement for WSN NODEs limits the widespread deployment of these technologies. Currently, WSN NODEs are extensively powered up using batteries, but the battery has limitation of lifetime, power density, and environmental concerns. To overcome this issue, energy harvester (EH) is developed and presented in this paper. Solar-based EH has been identified as the most viable source of energy to be harvested for autonomous WSN NODEs. Besides, a novel chemical-based EH is reported as the potential secondary source for harvesting energy because of its uninterrupted availability. By integrating both solar-based EH and chemical-based EH, a hybrid energy harvester (HEH) is developed to power up WSN NODEs. Experimental results from the real-time deployment shows that, besides supporting the daily operation of WSN NODE and Router, the developed HEH is capable of producing a surplus of 971 mA·hr equivalent energy to be stored inside the storage for NODE and 528.24 mA·hr equivalent energy for Router, which is significantly enough for perpetual operation of autonomous WSN NODEs used in environmental parameter profiling.


Sign in / Sign up

Export Citation Format

Share Document