radio transceiver
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 30)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 17 (4) ◽  
pp. 1-11
Author(s):  
Ahmed Kadhim Hasan

This paper compare  the accurecy of HF propagation  prediction programs for  HF circuits links between Iraq and  different points world wide  during August 2018 when  solar cycle 24 (start 2009 end 2020) is at minimun activity and also find out the best communication mode  used. The prediction   programs like Voice of America Coverage Analysis Program (VOACAP) and ITU Recommendation RS 533 (REC533 )  had been used to generat HF circuit link  parameters like Maximum Usable Frequency ( MUF) and Frequency of Transsmision (FOT) .Depending  on the predicted parameters (data)  , real radio contacts had been done using a radio transceiver from Icom  model IC 7100 with 100W RF power, tuner box and homemade  dipole antenna of 10 m length and  8m height above ground. From  correlation between the predicted data and observed data  the result was not accurate .


2021 ◽  
Vol 13 (1) ◽  
pp. 4
Author(s):  
Wouter Huygen ◽  
Junzi Sun ◽  
Jacco Hoekstra

Automatic Dependent Surveillance-Broadcast (ADS-B) enables aircraft to periodically broadcast their flight states such as position and velocity. Compared to classical radar surveillance, it increases update rate and accuracy. Currently, Mode S Extended Squitter is the most common implementation for ADS-B. Due to the simplicity of Mode S design, ADS-B signals are prone to injections. This study proposes a cost-effective solution that verifies the integrity of ADS-B signals using coherent receivers. We design the verification approach by combining the signal’s direction of arrival, estimated from the multi-channel data, with the target bearing calculated from ADS-B messages. By using another high-performance software-defined radio transceiver, we also conduct real signal injection experiments to validate our approaches.


Author(s):  
En Dar Kim ◽  
Ian Korostelev

An alternative method for field MOV surge arresters diagnosing was observed, the controlled characteristic was the surge voltage of a gap arrester. The condenser that was connected in series with gap arrester was applied as voltage measurement sensor. Electrical aging of active elements (MOV), surge arrester insulation degradation and other types of electric faults causes to voltage increase at capacitor. The voltage value can be measured directly or the energy stored in capacitor can be transformed to electromagnetic signal and, then, registered remotely by specific radio transceiver. The capacitor connected in series with the surge arrester can also be used for leakage current limitation during all the life period of surge arrester. Shunted with a spark gap and presented as the low-current gap arrester with pre-sated discharge voltage glass (porcelain) pin-cap insulator can be the simplest, but reliable sensor.  Taking into consideration modern technologies the surge arrester statement continuous monitoring system can be designed. It also allows locating the place of damaged arrester that is particularly true for remote maintenance of equipped with surge protection devices electrical


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1434
Author(s):  
Areeba Ayesha ◽  
MuhibUr Rahman ◽  
Amir Haider ◽  
Shabbir Majeed Chaudhry

One of the major impediments in the design and operation of a full-duplex radio transceiver is the presence of self-interference (SI), that is, the transceiver’s transmitted signal, 60–100 dB stronger than the desired signal of interest. To reduce the SI signal below the receiver’s sensitivity before coupling it to the receiver, radio frequency (RF)/analog domain cancellation is carried out. Even after SI cancellation to the required level in the analog domain, the residual SI signal still exits and lowers the transceiver’s performance. For residual SI cancellation, a digital domain cancellation is carried out. RF impairments are the major obstacle in the residual SI cancellation path in the digital domain. Linearization of RF impairments such as IQ mixer imbalance in the transmitter and receiver chain, non-linear PA with memory, and non-linear LNA are also carried out. Performance evaluation of the proposed techniques is carried out based on SINR, the power of different SI signal components, PSD, output to input relationship, SNR vs. BER, spectrum analyzer, constellation diagram, and link budget analysis. The proposed techniques provide attractive RF/analog SI cancellation of up to 80–90 dB, digital residual SI cancellation of up to 35 to 40 dB, total SI cancellation of up to 110 to 130 dB, and an SINR improvement of up to 50 dB.


2021 ◽  
Vol 27 (6) ◽  
pp. 59-72
Author(s):  
Reem Hashim Ahmed ◽  
Ekhlas Kadhum Hamza

The need to exchange large amounts of real-time data is constantly increasing in wireless communication. While traditional radio transceivers are not cost-effective and their components should be integrated, software-defined radio (SDR) ones have opened up a new class of wireless technologies with high security.  This study aims to design an  SDR  transceiver was built using one type of modulation, which is 16 QAM, and adding a  security subsystem using one type of chaos map, which is a  logistic map, because it is a very simple nonlinear dynamical equations that generate a random key and  EXCLUSIVE  OR with the originally transmitted data to protect data through the transmission. At the receiver, the data will be recovered  using the same key, the received data is the same at the sender, so this result shows that the transceiver work normally and calculates the BER at the end each time the SNR changed. Our results indicate that the designed transmitter and receiver perform as usual and finally calculate the bit error rate when the signal to noise ratio is changed. The evaluation of BER indicates that simulated values are smaller than theoretical ones obtained using the BER tool. when SNR is equivalent to 7 dB, the theoretical and simulated BER obtained is 0.01695 and 0.00199, respectively. Designing soft defined radio transceiver using MATLAB  R  2011a  and system generator ISE14.1/SIMULINK.


2021 ◽  
Author(s):  
Sikandar Khan ◽  
Muhamamd Mahtab Alam ◽  
yannick LeMoullec ◽  
alar Kussik ◽  
sven parand ◽  
...  

NarrowBand Internet of Things (NB-IoT) is an emerging cellular IoT technology that offers attractive features for deploying low-power wide area networks suitable for implementing massive machine type communications. NB-IoT features include e.g. extended coverage and deep penetration for massive connectivity, longer battery-life, appropriate throughput and desired latency at lower bandwidth. Regarding the device energy consumption, NB-IoT is mostly under-estimated for its control and signaling overheads, which calls for a better understanding of the energy consumption profiling of an NB-IoT radio transceiver. With this aim, this work presents a thorough investigation of the energy consumption profiling of Radio Resource Control (RRC) communication protocol between an NB-IoT radio transceiver and a cellular base-station. Using two different commercial off the shelf NB-IoT boards and two Mobile Network Operators (MNOs) NB-IoT test networks operational at Tallinn University of Technology, Estonia, we propose an empirical baseline energy consumption model. Based on comprehensive analyses of the profile traces from the widely used BG96 NB-IoT module operating in various states of RRC protocol, our results indicate that the proposed model accurately depicts the baseline energy consumption of an NB-IoT radio transceiver while operating at different coverage class levels. The evaluation errors for our proposed model vary between 0.33% and 15.38%.<br>


2021 ◽  
Vol 5 (3) ◽  
pp. 1-22
Author(s):  
Kai Li ◽  
Ning Lu ◽  
Jingjing Zheng ◽  
Pei Zhang ◽  
Wei Ni ◽  
...  

Thanks to flexible deployment and excellent maneuverability, autonomous drones have been recently considered as an effective means to act as aerial data relays for wireless ground devices with limited or no cellular infrastructure, e.g., smart farming in a remote area. Due to the broadcast nature of wireless channels, data communications between the drones and the ground devices are vulnerable to eavesdropping attacks. This article develops BloothAir, which is a secure multi-hop aerial relay system based on Bluetooth Low Energy ( BLE ) connected autonomous drones. For encrypting the BLE communications in BloothAir, a channel-based secret key generation is proposed, where received signal strength at the drones and the ground devices is quantized to generate the secret keys. Moreover, a dynamic programming-based channel quantization scheme is studied to minimize the secret key bit mismatch rate of the drones and the ground devices by recursively adjusting the quantization intervals. To validate the design of BloothAir, we build a multi-hop aerial relay testbed by using the MX400 drone platform and the Gust radio transceiver, which is a new lightweight onboard BLE communicator specially developed for the drone. Extensive real-world experiments demonstrate that the BloothAir system achieves a significantly lower secret key bit mismatch rate than the key generation benchmarks, which use the static quantization intervals. In addition, the high randomness of the generated secret keys is verified by the standard NIST test, thereby effectively protecting the BLE communications in BloothAir from the eavesdropping attacks.


The implementation of an automatic irrigation system based on the microcontroller and a wireless system network is presented in this paper. This implementation aims to demonstrate that automatic irrigation can be used to minimize and optimize water use. The automated irrigation system consists of the master control unit (MCU) and a distributed wireless sensor network (WSN). The communication between the WSN and the MCU is via a radio frequency (NRF25L01). The MCU has a radio transceiver that receives the sensor data from the wireless sensor network also has a communication link based cellular-internet interface using general packet radio service and a global system for mobile (GSM/GPRS). The activation of the automated system is done when the threshold value of the sensors in the WSN is reached. Each WSN consists of a soil moisture sensor probe, soil temperature probe, radio transceiver, and a microcontroller. The sensor measurements are transmitted to the MCU to analyze and activate/deactivate the automatic irrigation system. The internet connection using GPRS allows the data inspection in real-time on a server, where the temperature and soil moisture data are graphically displayed on the server using a graphical application and stored these data in a database server.


Author(s):  
Sikandar Zulqarnain Khan ◽  
Muhammad Mahtab Alam ◽  
Yannick Le Moullec ◽  
Alar Kuusik ◽  
Sven Parand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document