cyber attack
Recently Published Documents


TOTAL DOCUMENTS

1068
(FIVE YEARS 591)

H-INDEX

23
(FIVE YEARS 9)

2022 ◽  
Vol 205 ◽  
pp. 107745
Author(s):  
Mahdieh Adeli ◽  
Majid Hajatipour ◽  
Mohammad Javad Yazdanpanah ◽  
Hamed Hashemi-Dezaki ◽  
Mohsen Shafieirad

2022 ◽  
Vol 54 (8) ◽  
pp. 1-35
Author(s):  
Giuseppe Desolda ◽  
Lauren S. Ferro ◽  
Andrea Marrella ◽  
Tiziana Catarci ◽  
Maria Francesca Costabile

Phishing is the fraudulent attempt to obtain sensitive information by disguising oneself as a trustworthy entity in digital communication. It is a type of cyber attack often successful because users are not aware of their vulnerabilities or are unable to understand the risks. This article presents a systematic literature review conducted to draw a “big picture” of the most important research works performed on human factors and phishing. The analysis of the retrieved publications, framed along the research questions addressed in the systematic literature review, helps in understanding how human factors should be considered to defend against phishing attacks. Future research directions are also highlighted.


Author(s):  
Prof. Pritam Ahire

Abstract: This Malware detection is a field of computer security that deals with the study and prevention of malicious software. It is not the only way to defend a company against a cyber- attack. In order to be effective, companies should analyse their risk and identify the vulnerabilities. In this paper, we will examine different techniques used to detect computer malware and malicious websites as well as future directives in this area of study and also, we will discuss the growth in computer malware and how traditional methods of detection are being replaced by innovative techniques like behavioural-based model and Signature-based model. Future directives involve developing better security products in order to fight against cyber fraud which is on a rise in recent years especially in Asia Pacific region. With this increase in cyber frauds and other malicious activities, traditional methods are not enough to block computers from it as this method has many drawbacks. In order to tackle these issues, researchers have been developing new techniques such as heuristic analysis, static & dynamic analysis which can detect more than 90% of malware samples without any false positives or negatives. Keywords: Behaviour-based approach, Dynamic analysis, Heuristic, Malware, Ransomware, Signature-based model, Static analysis, Vulnerability.


Author(s):  
Fizza Zafri

Abstract: Technology advancement since last few decades creates cyber attack a critical issue. Cyber security has become an important part today. It has also become an important and crucial subject in the field of forensic science. Increased in the growth of internet technology and internet devices have increased the risk of cyber attack. Almost every organization today are depends on the internet and devices. There are many types of cyber attack. This paper is the detailed review about Ransomware attack. This paper is consisted about vast of the information about What is Ransomware Attack, how does it work, how ransomware attack emerged. After reading this paper you will learn about the ransomware attacks in history of cyber world. This will help you to learn and understand about ransomware attack, how to prevent yourself from ransomware attack. As a forensic science student, it is always important to be aware about the attacks that have happened in the history of cyber world. Before writing this paper, I have read and analyze many research paper and internet articles, so that I can write a detailed review paper which can help students and for the forensic awareness. Keywords: Cyberattack, Hacking, Ransomware, cyberworld, cyber security, ransomware, forensic, network security


Author(s):  
Seyed Hossein Rouhani ◽  
Hamed Mojallali ◽  
Alfred Baghramian

Simultaneous investigation of demand response programs and false data injection cyber-attack are critical issues for the smart power system frequency regulation. To this purpose, in this paper, the output of the studied system is simultaneously divided into two subsystems: one part including false data injection cyder-attack and another part without cyder-attack. Then, false data injection cyber-attack and load disturbance are estimated by a non-linear sliding mode observer, simultaneously and separately. After that, demand response is incorporated in the uncertain power system to compensate the whole or a part of the load disturbance based on the available electrical power in the aggregators considering communication time delay. Finally, active disturbance rejection control is modified and introduced to remove the false data injection cyber-attack and control the uncompensated load disturbance. The salp swarm algorithm is used to design the parameters. The results of several simulation scenarios indicate the efficient performance of the proposed method.


2022 ◽  
Vol 14 (2) ◽  
pp. 939
Author(s):  
Debabrata Singh ◽  
Anil Kumar Biswal ◽  
Debabrata Samanta ◽  
Dilbag Singh ◽  
Heung-No Lee 

For a reliable and convenient system, it is essential to build a secure system that will be protected from outer attacks and also serve the purpose of keeping the inner data safe from intruders. A juice jacking is a popular and spreading cyber-attack that allows intruders to get inside the system through the web and theive potential data from the system. For peripheral communications, Universal Serial Bus (USB) is the most commonly used standard in 5G generation computer systems. USB is not only used for communication, but also to charge gadgets. However, the transferal of data between devices using USB is prone to various security threats. It is necessary to maintain the confidentiality and sensitivity of data on the bus line to maintain integrity. Therefore, in this paper, a juice jacking attack is analyzed, using the maximum possible means through which a system can be affected using USB. Ten different malware attacks are used for experimental purposes. Various machine learning and deep learning models are used to predict malware attacks. An extensive experimental analysis reveals that the deep learning model can efficiently recognize the juice jacking attack. Finally, various techniques are discussed that can either prevent or avoid juice jacking attacks.


2022 ◽  
Vol 4 ◽  
Author(s):  
Qasem Abu Al-Haija

With the prompt revolution and emergence of smart, self-reliant, and low-power devices, Internet of Things (IoT) has inconceivably expanded and impacted almost every real-life application. Nowadays, for example, machines and devices are now fully reliant on computer control and, instead, they have their own programmable interfaces, such as cars, unmanned aerial vehicles (UAVs), and medical devices. With this increased use of IoT, attack capabilities have increased in response, which became imperative that new methods for securing these systems be developed to detect attacks launched against IoT devices and gateways. These attacks are usually aimed at accessing, changing, or destroying sensitive information; extorting money from users; or interrupting normal business processes. In this research, we present new efficient and generic top-down architecture for intrusion detection, and classification in IoT networks using non-traditional machine learning is proposed in this article. The proposed architecture can be customized and used for intrusion detection/classification incorporating any IoT cyber-attack datasets, such as CICIDS Dataset, MQTT dataset, and others. Specifically, the proposed system is composed of three subsystems: feature engineering (FE) subsystem, feature learning (FL) subsystem, and detection and classification (DC) subsystem. All subsystems have been thoroughly described and analyzed in this article. Accordingly, the proposed architecture employs deep learning models to enable the detection of slightly mutated attacks of IoT networking with high detection/classification accuracy for the IoT traffic obtained from either real-time system or a pre-collected dataset. Since this work employs the system engineering (SE) techniques, the machine learning technology, the cybersecurity of IoT systems field, and the collective corporation of the three fields have successfully yielded a systematic engineered system that can be implemented with high-performance trajectories.


2022 ◽  
Vol 9 ◽  
Author(s):  
M. Akshay Kumaar ◽  
Duraimurugan Samiayya ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang ◽  
...  

The unbounded increase in network traffic and user data has made it difficult for network intrusion detection systems to be abreast and perform well. Intrusion Systems are crucial in e-healthcare since the patients' medical records should be kept highly secure, confidential, and accurate. Any change in the actual patient data can lead to errors in the diagnosis and treatment. Most of the existing artificial intelligence-based systems are trained on outdated intrusion detection repositories, which can produce more false positives and require retraining the algorithm from scratch to support new attacks. These processes also make it challenging to secure patient records in medical systems as the intrusion detection mechanisms can become frequently obsolete. This paper proposes a hybrid framework using Deep Learning named “ImmuneNet” to recognize the latest intrusion attacks and defend healthcare data. The proposed framework uses multiple feature engineering processes, oversampling methods to improve class balance, and hyper-parameter optimization techniques to achieve high accuracy and performance. The architecture contains <1 million parameters, making it lightweight, fast, and IoT-friendly, suitable for deploying the IDS on medical devices and healthcare systems. The performance of ImmuneNet was benchmarked against several other machine learning algorithms on the Canadian Institute for Cybersecurity's Intrusion Detection System 2017, 2018, and Bell DNS 2021 datasets which contain extensive real-time and latest cyber attack data. Out of all the experiments, ImmuneNet performed the best on the CIC Bell DNS 2021 dataset with about 99.19% accuracy, 99.22% precision, 99.19% recall, and 99.2% ROC-AUC scores, which are comparatively better and up-to-date than other existing approaches in classifying between requests that are normal, intrusion, and other cyber attacks.


Author(s):  
I. A. Lukicheva ◽  
A. L. Kulikov

THE PURPOSE. Smart electrical grids involve extensive use of information infrastructure. Such an aggregate cyber-physical system can be subject to cyber attacks. One of the ways to counter cyberattacks is state estimation. State Estimation is used to identify the present power system operating state and eliminating metering errors and corrupted data. In particular, when a real measurement is replaced by a false one by a malefactor or a failure in the functioning of communication channels occurs, it is possible to detect false data and restore them. However, there is a class of cyberattacks, so-called False Data Injection Attack, aimed at distorting the results of the state estimation. The aim of the research was to develop a state estimation algorithm, which is able to work in the presence of cyber-attack with high accuracy.METHODS. The authors propose a Multi-Model Forecasting-Aided State Estimation method based on multi-model discrete tracking parameter estimation by the Kalman filter. The multimodal state estimator consisted of three single state estimators, which produced single estimates using different forecasting models. In this paper only linear forecasting models were considered, such as autoregression model, vector autoregression model and Holt’s exponen tial smoothing. When we obtained the multi-model estimate as the weighted sum of the single-model estimates. Cyberattack detection was implemented through innovative and residual analysis. The analysis of the proposed algorithm performance was carried out by simulation modeling using the example of a IEEE 30-bus system in Matlab.RESULTS. The paper describes an false data injection cyber attack and its specific impact on power system state estimation. A Multi - Model Forecasting-Aided State Estimation algorithm has been developed, which allows detecting cyber attacks and recovering corrupted data. Simulation of the algorithm has been carried out and its efficiency has been proved.CONCLUSION. The results showed the cyber attack detection rate of 100%. The Multi-Model Forecasting-Aided State Estimation is an protective measure against the impact of cyber attacks on power system.


Author(s):  
Raisa Dzhamtyrova ◽  
Carsten Maple

AbstractThe increasing value of data held in enterprises makes it an attractive target to attackers. The increasing likelihood and impact of a cyber attack have highlighted the importance of effective cyber risk estimation. We propose two methods for modelling Value-at-Risk (VaR) which can be used for any time-series data. The first approach is based on Quantile Autoregression (QAR), which can estimate VaR for different quantiles, i. e. confidence levels. The second method, we term Competitive Quantile Autoregression (CQAR), dynamically re-estimates cyber risk as soon as new data becomes available. This method provides a theoretical guarantee that it asymptotically performs as well as any QAR at any time point in the future. We show that these methods can predict the size and inter-arrival time of cyber hacking breaches by running coverage tests. The proposed approaches allow to model a separate stochastic process for each significance level and therefore provide more flexibility compared to previously proposed techniques. We provide a fully reproducible code used for conducting the experiments.


Sign in / Sign up

Export Citation Format

Share Document