Low-Frequency Surface Integral Equation Solution by Multilevel Green's Function Interpolation With Fast Fourier Transform Acceleration

2012 ◽  
Vol 60 (3) ◽  
pp. 1440-1449 ◽  
Author(s):  
Dennis T. Schobert ◽  
Thomas F. Eibert
2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Shu-Wen Chen ◽  
Feng Lu ◽  
Yao Ma

A volume integral equation based fast algorithm using the Fast Fourier Transform of fitting Green’s function (FG-FFT) is proposed in this paper for analysis of electromagnetic scattering from 3D anisotropic dielectric objects. For the anisotropic VIE model, geometric discretization is still implemented by tetrahedron cells and the Schaubert-Wilton-Glisson (SWG) basis functions are also used to represent the electric flux density vectors. Compared with other Fast Fourier Transform based fast methods, using fitting Green’s function technique has higher accuracy and can be applied to a relatively coarse grid, so the Fast Fourier Transform of fitting Green’s function is selected to accelerate anisotropic dielectric model of volume integral equation for solving electromagnetic scattering problems. Besides, the near-field matrix elements in this method are used to construct preconditioner, which has been proved to be effective. At last, several representative numerical experiments proved the validity and efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document