scholarly journals Single-Strand Excitation for Probing Current Sharing and Parallel Resistance in Cored Nb3Sn Rutherford Cables at 4.2 K and 10 Tesla

2017 ◽  
Vol 27 (4) ◽  
pp. 1-4
Author(s):  
Chris Kovacs ◽  
Mike D. Sumption ◽  
Edward W. Collings
2020 ◽  
Author(s):  
Di Liu ◽  
Yaming Shao ◽  
Joseph A. Piccirilli ◽  
Yossi Weizmann

<p>Though advances in nanotechnology have enabled the construction of synthetic nucleic acid based nanoarchitectures with ever-increasing complexity for various applications, high-resolution structures are lacking due to the difficulty of obtaining good diffracting crystals. Here we report the design of RNA nanostructures based on homooligomerizable tiles from an RNA single-strand for X-ray determination. Three structures are solved to near-atomic resolution: a 2D parallelogram, an unexpectedly formed 3D nanobracelet, and a 3D nanocage. Structural details of their constituent motifs—such as kissing loops, branched kissing-loops and T-junctions—that resemble natural RNA motifs and resisted X-ray determination are revealed. This work unveils the largely unexplored potential of crystallography in gaining high-resolution feedback for nanostructure design and suggests a novel route to investigate RNA motif structures by configuring them into nanoarchitectures.</p>


Sign in / Sign up

Export Citation Format

Share Document