rna motif
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 37)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Junfei Ma ◽  
Shachinthaka D. Dissanayaka Mudiyanselage ◽  
Woong June Park ◽  
Mo Wang ◽  
Ryuta Takeda ◽  
...  

AbstractThe prevailing view regarding intracellular RNA trafficking in eukaryotic cells describes that RNAs transcribed in the nucleus either stay in the nucleus or cross the nuclear envelope entering the cytoplasm for function. Interestingly, emerging evidence illustrates numerous functional RNAs trafficking in the reverse direction from the cytoplasm to the nucleus. However, the mechanism underlying the RNA nuclear import has not been well elucidated. Viroids are single-stranded circular noncoding RNAs that infect plants. Using nuclear-replicating viroids as a model, we showed that cellular Importin alpha-4 is likely involved in viroid RNA nuclear import, empirically supporting the involvement of Importin-based cellular pathway in RNA nuclear import. We also confirmed the involvement of a cellular protein (Virp1) that binds both Importin alpha-4 and viroids. Furthermore, a conserved C-loop in nuclear-replicating viroids is critical for Virp1 binding. Disrupting C-loop impairs Virp1 binding, viroid nuclear accumulation and infectivity. Further, C-loop exists in a subviral satellite noncoding RNA that relies on Virp1 for nuclear import. These results have significant implications for understanding the infection process of subviral agents. In addition, our data outline a cellular pathway responsible for the nuclear import of RNAs and uncover a 3-dimensional RNA motif-based regulation over RNA nuclear import.


2021 ◽  
pp. 29-37
Author(s):  
Heather N. Smith ◽  
Junfei Ma ◽  
Ying Wang
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luca F. R. Gebert ◽  
Mansun Law ◽  
Ian J. MacRae

AbstractmicroRNAs (miRNAs) form regulatory networks in metazoans. Viruses engage miRNA networks in numerous ways, with Flaviviridae members exploiting direct interactions of their RNA genomes with host miRNAs. For hepatitis C virus (HCV), binding of liver-abundant miR-122 stabilizes the viral RNA and regulates viral translation. Here, we investigate the structural basis for these activities, taking into consideration that miRNAs function in complex with Argonaute (Ago) proteins. The crystal structure of the Ago2:miR-122:HCV complex reveals a structured RNA motif that traps Ago2 on the viral RNA, masking its 5’ end from enzymatic attack. The trapped Ago2 can recruit host factor PCBP2, implicated in viral translation, while binding of a second Ago2:miR-122 competes with PCBP2, creating a potential molecular switch for translational control. Combined results reveal a viral RNA structure that modulates Ago2:miR-122 dynamics and repurposes host proteins to generate a functional analog of the mRNA cap-binding complex.


2021 ◽  
Author(s):  
Shunsuke Kawasaki ◽  
Hiroki Ono ◽  
Moe Hirosawa ◽  
Takeru Kuwabara ◽  
Hirohide Saito

The complexity of synthetic genetic circuits relies on repertories of biological circuitry with high orthogonality. Although post-transcriptional circuitry relying on RNA-binding proteins (RBPs) qualifies as a repertory, the limited pool of regulatory devices hinders network modularity and scalability. Here we propose CaRTRIDGE (Cas-Responsive Translational Regulation Integratable into Diverse Genomic Engineering) to repurpose CRISPR-associated (Cas) proteins as translational modulators. We demonstrate that a set of Cas proteins are able to repress (OFF) or activate (ON) the translation of mRNAs that contain a Cas-binding RNA motif in the 5'-UTR. We designed 81 different types of translation OFF and ON switches and verified their functional characteristics. Many of them functioned as efficient translational regulators and showed orthogonality in mammalian cells. By interconnecting these switches, we designed and built artificial circuits, including 60 translational AND gates. Moreover, we show that various CRISPR-related technologies, including anti-CRISPR and split-Cas9 platforms, can be repurposed to control translation. Our Cas-mediated translational regulation is compatible with transcriptional regulation by Cas proteins and increases the complexity of synthetic circuits with fewer elements. CaRTRIDGE builds protein-responsive mRNA switches more than ever and leads to the development of both Cas-mediated genome editing and translational regulation technologies.


2021 ◽  
Author(s):  
Jialin Yao ◽  
Qiao Zhou ◽  
Hengyi Xiao ◽  
Da Jia ◽  
Qingxiang Sun

Abstract The majority of lncRNAs and a small fraction of mRNAs localize in the cell nucleus to exert their functions. A SIRLOIN RNA motif was previously reported to drive its nuclear localization by the RNA-binding protein hnRNP K. However, the underlying mechanism remains unclear. Here, we report crystal structures of hnRNP K in complex with SIRLOIN, and with the nuclear import receptor (NIR) Impα1, respectively. The protein hnRNP K bound to SIRLOIN with multiple weak interactions, and interacted Impα1 using an independent high-affinity site. Forming a complex with hnRNP K and Impα1 was essential for the nuclear and stress granule localization of SIRLOIN in semi-permeabilized cells. Nuclear import of SIRLOIN enhanced with increasing NIR concentrations, but its stress granule localization peaked at a low NIR concentration. Collectively, we propose a mechanism of SIRLOIN localization, in which NIRs functioned as drivers/regulators, and hnRNP K as an adaptor.


RNA Biology ◽  
2021 ◽  
pp. 1-9
Author(s):  
Ivar W. Dilweg ◽  
Anya Savina ◽  
Susanne Köthe ◽  
Alexander P. Gultyaev ◽  
Peter J. Bredenbeek ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Min Zhu ◽  
Juan Gao ◽  
Xian-Juan Lin ◽  
Yun-Yun Gong ◽  
Yan-Chao Qi ◽  
...  

Abstract Simultaneous dysregulation of multiple microRNAs (miRs) affects various pathological pathways related to cardiac failure. In addition to being potential cardiac disease-specific markers, miR-23b/27b/24-1 were reported to be responsible for conferring cardiac pathophysiological processes. In this study, we identified a conserved guanine-rich RNA motif within the miR-23b/27b/24-1 cluster that can form an RNA G-quadruplex (rG4) in vitro and in cells. Disruption of this intragenic rG4 significantly increased the production of all three miRs. Conversely, a G4-binding ligand tetrandrine (TET) stabilized the rG4 and suppressed miRs production in human and rodent cardiomyocytes. Our further study showed that the rG4 prevented Drosha-DGCR8 binding and processing of the pri-miR, suppressing the biogenesis of all three miRs. Moreover, CRISPR/Cas9-mediated G4 deletion in the rat genome aberrantly elevated all three miRs in the heart in vivo, leading to cardiac contractile dysfunction. Importantly, loss of the G4 resulted in reduced targets for the aforementioned miRs critical for normal heart function and defects in the L-type Ca2+ channel-ryanodine receptor (LCC-RyR) coupling in cardiomyocytes. Our results reveal a novel mechanism for G4-dependent regulation of miR biogenesis, which is essential for maintaining normal heart function.


2021 ◽  
Vol 22 (4) ◽  
pp. 1678
Author(s):  
Davide Barbagallo ◽  
Angela Caponnetto ◽  
Cristina Barbagallo ◽  
Rosalia Battaglia ◽  
Federica Mirabella ◽  
...  

Circular RNAs (circRNAs) are a large class of RNAs with regulatory functions within cells. We recently showed that circSMARCA5 is a tumor suppressor in glioblastoma multiforme (GBM) and acts as a decoy for Serine and Arginine Rich Splicing Factor 1 (SRSF1) through six predicted binding sites (BSs). Here we characterized RNA motifs functionally involved in the interaction between circSMARCA5 and SRSF1. Three different circSMARCA5 molecules (Mut1, Mut2, Mut3), each mutated in two predicted SRSF1 BSs at once, were obtained through PCR-based replacement of wild-type (WT) BS sequences and cloned in three independent pcDNA3 vectors. Mut1 significantly decreased its capability to interact with SRSF1 as compared to WT, based on the RNA immunoprecipitation assay. In silico analysis through the “Find Individual Motif Occurrences” (FIMO) algorithm showed GAUGAA as an experimentally validated SRSF1 binding motif significantly overrepresented within both predicted SRSF1 BSs mutated in Mut1 (q-value = 0.0011). U87MG and CAS-1, transfected with Mut1, significantly increased their migration with respect to controls transfected with WT, as revealed by the cell exclusion zone assay. Immortalized human brain microvascular endothelial cells (IM-HBMEC) exposed to conditioned medium (CM) harvested from U87MG and CAS-1 transfected with Mut1 significantly sprouted more than those treated with CM harvested from U87MG and CAS-1 transfected with WT, as shown by the tube formation assay. qRT-PCR showed that the intracellular pro- to anti-angiogenic Vascular Endothelial Growth Factor A (VEGFA) mRNA isoform ratio and the amount of total VEGFA mRNA secreted in CM significantly increased in Mut1-transfected CAS-1 as compared to controls transfected with WT. Our data suggest that GAUGAA is the RNA motif responsible for the interaction between circSMARCA5 and SRSF1 as well as for the circSMARCA5-mediated control of GBM cell migration and angiogenic potential.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
E. Agirre ◽  
A. J. Oldfield ◽  
N. Bellora ◽  
A. Segelle ◽  
R. F. Luco

AbstractAlternative splicing relies on the combinatorial recruitment of splicing regulators to specific RNA binding sites. Chromatin has been shown to impact this recruitment. However, a limited number of histone marks have been studied at a global level. In this work, a machine learning approach, applied to extensive epigenomics datasets in human H1 embryonic stem cells and IMR90 foetal fibroblasts, has identified eleven chromatin modifications that differentially mark alternatively spliced exons depending on the level of exon inclusion. These marks act in a combinatorial and position-dependent way, creating characteristic splicing-associated chromatin signatures (SACS). In support of a functional role for SACS in coordinating splicing regulation, changes in the alternative splicing of SACS-marked exons between ten different cell lines correlate with changes in SACS enrichment levels and recruitment of the splicing regulators predicted by RNA motif search analysis. We propose the dynamic nature of chromatin modifications as a mechanism to rapidly fine-tune alternative splicing when necessary.


Sign in / Sign up

Export Citation Format

Share Document