Adaptive Model Initialization and Deformation for Automatic Segmentation of T1-Weighted Brain MRI Data

2005 ◽  
Vol 52 (6) ◽  
pp. 1128-1131 ◽  
Author(s):  
Z. Wu ◽  
K.D. Paulsen ◽  
J.M. Sullivan
Author(s):  
Laura Gui ◽  
Radoslaw Lisowski ◽  
Tamara Faundez ◽  
Petra S. Huppi ◽  
Francois Lazeyras ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shahab U. Ansari ◽  
Kamran Javed ◽  
Saeed Mian Qaisar ◽  
Rashad Jillani ◽  
Usman Haider

Multiple sclerosis (MS) is a chronic and autoimmune disease that forms lesions in the central nervous system. Quantitative analysis of these lesions has proved to be very useful in clinical trials for therapies and assessing disease prognosis. However, the efficacy of these quantitative analyses greatly depends on how accurately the MS lesions have been identified and segmented in brain MRI. This is usually carried out by radiologists who label 3D MR images slice by slice using commonly available segmentation tools. However, such manual practices are time consuming and error prone. To circumvent this problem, several automatic segmentation techniques have been investigated in recent years. In this paper, we propose a new framework for automatic brain lesion segmentation that employs a novel convolutional neural network (CNN) architecture. In order to segment lesions of different sizes, we have to pick a specific filter or size 3 × 3 or 5 × 5. Sometimes, it is hard to decide which filter will work better to get the best results. Google Net has solved this problem by introducing an inception module. An inception module uses 3 × 3 , 5 × 5 , 1 × 1 and max pooling filters in parallel fashion. Results show that incorporating inception modules in a CNN has improved the performance of the network in the segmentation of MS lesions. We compared the results of the proposed CNN architecture for two loss functions: binary cross entropy (BCE) and structural similarity index measure (SSIM) using the publicly available ISBI-2015 challenge dataset. A score of 93.81 which is higher than the human rater with BCE loss function is achieved.


2021 ◽  
Author(s):  
Pankaj Eknath Kasar ◽  
Shivajirao M. Jadhav ◽  
Vineet Kansal

Abstract The tumor detection is major challenging task in brain tumor quantitative evaluation. In recent years, owing to non-invasive and strong soft tissue comparison, Magnetic Resonance Imaging (MRI) has gained great interest. MRI is a commonly used image modality technique to locate brain tumors. An immense amount of data is produced by the MRI. Heterogeneity, isointense and hypointense tumor properties restrict manual segmentation in a fair period of time, thus restricting the use of reliable quantitative measures in clinical practice. In the clinical practice manual segmentation task is quite time consuming and their performance is highly depended on the operator’s experience. Accurate and automated tumor segmentation techniques are also needed; however, the severe spatial and structural heterogeneity of brain tumors makes automatic segmentation a difficult job. This paper proposes fully automatic segmentation of brain tumors using encoder-decoder based convolutional neural networks. The paper focuses on well-known semantic segmentation deep neural networks i.e., UNET and SEGNET for segmenting tumors from Brain MRI images. The networks are trained and tested using freely accessible standard dataset, with Dice Similarity Coefficient (DSC) as metric for whole predicted image i.e., including tumor and background. UNET’s average DSC on test dataset is 0.76 whereas for SEGNET we got average DSC 0.67. The evaluation of results proves that UNET is having better performance than SEGNET.


Sign in / Sign up

Export Citation Format

Share Document