Optimal zero locations of continuous-time systems with distinct poles tracking first-order step responses

Author(s):  
A.S. Hauksdottir
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Abimael Salcedo ◽  
Joaquin Alvarez

A technique to generate (periodic or nonperiodic) oscillations systematically in first-order, continuous-time systems via a nonlinear function of the state, delayed by a certain time d, is proposed. This technique consists in choosing a nonlinear function of the delayed state with some passivity properties, tuning a gain to ensure that all the equilibrium points of the closed-loop system be unstable, and then imposing conditions on the closed-loop system to be semipassive. We include several typical examples to illustrate the effectiveness of the proposed technique, with which we can generate a great variety of chaotic attractors. We also include a physical example built with a simple electronic circuit that, after applying the proposed technique, displays a similar behavior to the logistic map.


2009 ◽  
Vol 25 (4) ◽  
pp. 985-994 ◽  
Author(s):  
Peter M. Robinson

We consider a multivariate continuous-time process, generated by a system of linear stochastic differential equations, driven by white noise, and involving coefficients that possibly vary over time. The process is observable only at discrete, but not necessarily equally-spaced, time points (though equal spacing significantly simplifies matters). Such settings represent partial extensions of ones studied extensively by A.R. Bergstrom. A model for the observed time series is deduced. Initially we focus on a first-order model, but higher-order models are discussed in the case of equally-spaced observations. Some discussion of issues of statistical inference is included.


Sign in / Sign up

Export Citation Format

Share Document