scholarly journals Conditions for the Stability of Switched Systems Containing Unstable Subsystems

2019 ◽  
Vol 66 (4) ◽  
pp. 617-621 ◽  
Author(s):  
Yue-E Wang ◽  
Hamid Reza Karimi ◽  
Di Wu
2016 ◽  
Vol 39 (5) ◽  
pp. 781-790 ◽  
Author(s):  
Guopei Chen ◽  
Ying Yang

This paper considers the asymptotic stability of a class of nonlinear fractional order impulsive switched systems by extending the result of existing work. First, a criterion is given to verify the stability of systems by using the Mittag–Leffler function and fractional order multiple Lyapunov functions. Second, by combining the methods of minimum dwell time with fractional order multiple Lyapunov functions, another sufficient condition for the stability of systems is given. Third, by using a periodic switching technique, a switching signal is designed to ensure the asymptotic stability of a system with both stable and unstable subsystems. Finally, two numerical examples are provided to illustrate the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rongwei Guo

This paper investigates the stability of switched nonlinear (SN) systems in two cases: (1) all subsystems are globally asymptotically stable (GAS), and (2) both GAS subsystems and unstable subsystems coexist, and it proposes a number of new results on the stability analysis. Firstly, an improved average dwell time (ADT) method is presented for the stability of such switched system by extending our previous dwell time method. In particular, an improved mode-dependent average dwell time (MDADT) method for the switched systems whose subsystems are quadratically stable (QS) is also obtained. Secondly, based on the improved ADT and MDADT methods, several new results to the stability analysis are obtained. It should be pointed out that the obtained results have two advantages over the existing ones; one is that the improved ADT method simplifies the conditions of the existing ADT method, the other is that the obtained lower bound of ADT (τa*) is also smaller than that obtained by other methods. Finally, illustrative examples are given to show the correctness and the effectiveness of the proposed methods.


2014 ◽  
Vol 643 ◽  
pp. 83-89
Author(s):  
Shu Rong Sun ◽  
Guang Rong Zhang ◽  
Ping Zhao

In this paper, we study the stability properties of a general class of nonautonomous discrete-time switched nonlinear systems. The switched systems consist of stable and unstable subsystems. Based on Lyapunov functions, some sufficient conditions for uniform stability, uniform asymptotic stability and uniform exponential stability are established.


Author(s):  
Aysegul Kivilcim ◽  
Ozkan Karabacak ◽  
Rafal Wisniewski

This paper presents sufficient conditions for almost global stability of nonlinear switched systems consisting of both stable and unstable subsystems. Techniques from the stability analysis of switched systems have been combined with the multiple Lyapunov density approach - recently proposed by the authors for the almost global stability of nonlinear switched systems composed of stable subsystems. By using slow switching for stable subsystems and fast switching for unstable subsystems lower and upper bounds for mode-dependent average dwell times are obtained. In addition to that, by allowing each subsystem to perform slow switching and using some restrictions on total operation time of unstable subsystems and stable subsystems, we have obtained a lower bound for an average dwell time.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
V. Nosov ◽  
J. A. Meda-Campaña ◽  
J. C. Gomez-Mancilla ◽  
J. O. Escobedo-Alva ◽  
R. G. Hernández-García

The stability of autonomous dynamical switched systems is analyzed by means of multiple Lyapunov functions. The stability theorems given in this paper have finite number of conditions to check. It is shown that linear functions can be used as Lyapunov functions. An example of an exponentially asymptotically stable switched system formed by four unstable systems is also given.


Sign in / Sign up

Export Citation Format

Share Document