Minimal-Approximation-Based Distributed Consensus Tracking of a Class of Uncertain Nonlinear Multiagent Systems With Unknown Control Directions

2017 ◽  
Vol 47 (8) ◽  
pp. 1994-2007 ◽  
Author(s):  
Yun Ho Choi ◽  
Sung Jin Yoo
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Guoguang Wen ◽  
Yongguang Yu ◽  
Zhaoxia Peng ◽  
Ahmed Rahmani

This paper mainly addresses the distributed consensus tracking problem for second-order nonlinear multiagent systems with a specified reference trajectory. The dynamics of each follower consists of two terms: nonlinear inherent dynamics and a simple communication protocol relying only on the position and velocity information of its neighbors. The consensus reference is taken as a virtual leader, whose output is only its position and velocity information that is available to only a subset of a group of followers. To achieve consensus tracking, a class of nonsmooth control protocols is proposed which reply on the relative information among the neighboring agents. Then some corresponding sufficient conditions are derived. It is shown that if the communication graph associated with the virtual leader and followers is connected at each time instant, the consensus can be achieved at least globally exponentially with the proposed protocol. Rigorous proofs are given by using graph theory, matrix theory, and Lyapunov theory. Finally, numerical examples are presented to illustrate the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document