Hallucinating Color Face Image by Learning Graph Representation in Quaternion Space

2020 ◽  
pp. 1-13
Author(s):  
Licheng Liu ◽  
C. L. Philip Chen ◽  
Shutao Li
2020 ◽  
Author(s):  
Artur Schweidtmann ◽  
Jan Rittig ◽  
Andrea König ◽  
Martin Grohe ◽  
Alexander Mitsos ◽  
...  

<div>Prediction of combustion-related properties of (oxygenated) hydrocarbons is an important and challenging task for which quantitative structure-property relationship (QSPR) models are frequently employed. Recently, a machine learning method, graph neural networks (GNNs), has shown promising results for the prediction of structure-property relationships. GNNs utilize a graph representation of molecules, where atoms correspond to nodes and bonds to edges containing information about the molecular structure. More specifically, GNNs learn physico-chemical properties as a function of the molecular graph in a supervised learning setup using a backpropagation algorithm. This end-to-end learning approach eliminates the need for selection of molecular descriptors or structural groups, as it learns optimal fingerprints through graph convolutions and maps the fingerprints to the physico-chemical properties by deep learning. We develop GNN models for predicting three fuel ignition quality indicators, i.e., the derived cetane number (DCN), the research octane number (RON), and the motor octane number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited experimental data in the order of hundreds, we propose a combination of multi-task learning, transfer learning, and ensemble learning. The results show competitive performance of the proposed GNN approach compared to state-of-the-art QSPR models making it a promising field for future research. The prediction tool is available via a web front-end at www.avt.rwth-aachen.de/gnn.</div>


2007 ◽  
Vol 1 (4) ◽  
pp. 62-69
Author(s):  
Milhled Alfaouri ◽  
◽  
Nada N. Al-Ramahi ◽  

2019 ◽  
pp. 161
Author(s):  
Jamal Mustafa Al-Tuwaijari ◽  
Suhad Ibrahim Mohammed

2018 ◽  
Vol 30 (12) ◽  
pp. 2311
Author(s):  
Zhendong Li ◽  
Yong Zhong ◽  
Dongping Cao

Author(s):  
Xiaolin Tang ◽  
Xiaogang Wang ◽  
Jin Hou ◽  
Huafeng Wu ◽  
Ping He

Introduction: Under complex illumination conditions such as poor light sources and light changes rapidly, there are two disadvantages of current gamma transform in preprocessing face image: one is that the parameters of transformation need to be set based on experience; the other is the details of the transformed image are not obvious enough. Objective: Improve the current gamma transform. Methods: This paper proposes a weighted fusion algorithm of adaptive gamma transform and edge feature extraction. First, this paper proposes an adaptive gamma transform algorithm for face image preprocessing, that is, the parameter of transformation generated by calculation according to the specific gray value of the input face image. Secondly, this paper uses Sobel edge detection operator to extract the edge information of the transformed image to get the edge detection image. Finally, this paper uses the adaptively transformed image and the edge detection image to obtain the final processing result through a weighted fusion algorithm. Results: The contrast of the face image after preprocessing is appropriate, and the details of the image are obvious. Conclusion: The method proposed in this paper can enhance the face image while retaining more face details, without human-computer interaction, and has lower computational complexity degree.


Author(s):  
Palash Goyal ◽  
Sachin Raja ◽  
Di Huang ◽  
Sujit Rokka Chhetri ◽  
Arquimedes Canedo ◽  
...  

2021 ◽  
Vol 54 (2) ◽  
pp. 1-36
Author(s):  
Fan Zhou ◽  
Xovee Xu ◽  
Goce Trajcevski ◽  
Kunpeng Zhang

The deluge of digital information in our daily life—from user-generated content, such as microblogs and scientific papers, to online business, such as viral marketing and advertising—offers unprecedented opportunities to explore and exploit the trajectories and structures of the evolution of information cascades. Abundant research efforts, both academic and industrial, have aimed to reach a better understanding of the mechanisms driving the spread of information and quantifying the outcome of information diffusion. This article presents a comprehensive review and categorization of information popularity prediction methods, from feature engineering and stochastic processes , through graph representation , to deep learning-based approaches . Specifically, we first formally define different types of information cascades and summarize the perspectives of existing studies. We then present a taxonomy that categorizes existing works into the aforementioned three main groups as well as the main subclasses in each group, and we systematically review cutting-edge research work. Finally, we summarize the pros and cons of existing research efforts and outline the open challenges and opportunities in this field.


Sign in / Sign up

Export Citation Format

Share Document