scholarly journals Optimizing Privacy-Preserving Outsourced Convolutional Neural Network Predictions

Author(s):  
Minghui Li ◽  
Sherman S. M. Chow ◽  
Shengshan Hu ◽  
Yuejing Yan ◽  
Shen Chao ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
Yanan Bai ◽  
Quanliang Liu ◽  
Wenyuan Wu ◽  
Yong Feng

The emerging topic of privacy-preserving deep learning as a service has attracted increasing attention in recent years, which focuses on building an efficient and practical neural network prediction framework to secure client and model-holder data privately on the cloud. In such a task, the time cost of performing the secure linear layers is expensive, where matrix multiplication is the atomic operation. Most existing mix-based solutions heavily emphasized employing BGV-based homomorphic encryption schemes to secure the linear layer on the CPU platform. However, they suffer an efficiency and energy loss when dealing with a larger-scale dataset, due to the complicated encoded methods and intractable ciphertext operations. To address it, we propose cuSCNN, a secure and efficient framework to perform the privacy prediction task of a convolutional neural network (CNN), which can flexibly perform on the GPU platform. Its main idea is 2-fold: (1) To avoid the trivia and complicated homomorphic matrix computations brought by BGV-based solutions, it adopts GSW-based homomorphic matrix encryption to efficiently enable the linear layers of CNN, which is a naive method to secure matrix computation operations. (2) To improve the computation efficiency on GPU, a hybrid optimization approach based on CUDA (Compute Unified Device Architecture) has been proposed to improve the parallelism level and memory access speed when performing the matrix multiplication on GPU. Extensive experiments are conducted on industrial datasets and have shown the superior performance of the proposed cuSCNN framework in terms of runtime and power consumption compared to the other frameworks.


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document