Data-driven Fault Diagnosis for PEM Fuel Cell System Using Sensor Pre-Selection Method and Artificial Neural Network Model

Author(s):  
Yanqiu Xing ◽  
Bowen Wang ◽  
Zhichao Gong ◽  
Zhongjun Hou ◽  
Fuqiang Xi ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2531
Author(s):  
Feng Han ◽  
Ying Tian ◽  
Qiang Zou ◽  
Xin Zhang

In this work, the possibilistic fuzzy C-means clustering artificial bee colony support vector machine (PFCM-ABC-SVM) method is proposed and applied for the fault diagnosis of a polymer electrolyte membrane (PEM) fuel cell system. The innovation of this method is that it can filter data with Gaussian noise and diagnose faults under dynamic conditions, and the amplitude of characteristic parameters is reduced to ±10%. Under dynamic conditions with Gaussian noise, the faults of the PEM fuel cell system are simulated and the original dataset is established. The possibilistic fuzzy C-means (PFCM) algorithm is used to filter samples with membership and typicality less than 90% and to optimize the original dataset. The artificial bee colony (ABC) algorithm is used to optimize the penalty factor C and kernel function parameter g. Finally, the optimized support vector machine (SVM) model is used to diagnose the faults of the PEM fuel cell system. To illustrate the results of the fault diagnosis, a nonlinear PEM fuel cell simulator model which has been presented in the literature is used. In addition, the PFCM-ABC-SVM method is compared with other methods. The result shows that the method can diagnose faults in a PEM fuel cell system effectively and the accuracy of the testing set sample is up to 98.51%. When solving small-sized, nonlinear, high-dimensional problems, the PFCM-ABC-SVM method can improve the accuracy of fault diagnosis.


10.6036/10290 ◽  
2021 ◽  
Vol 96 (6) ◽  
pp. 633-639
Author(s):  
Shiyong Tao ◽  
Weirong Chen ◽  
Shuna Jiang ◽  
Xinyu Liu ◽  
Jiaxi Yu

Main drawbacks of fuel cell systems, namely, high cost, poor reliability, and short lifespan, limit the large-scale commercial application of fuel cell systems. The health status detection of fuel cell systems for locomotives is of great significance to the safe and stable operation of locomotives. To identify the failure modes of the fuel cell system accurately and quickly, this study proposed an intelligent health status detection method for locomotive fuel cells based on data-driven techniques. In this study, the actual test data of a 150-kW fuel cell system for locomotives was analyzed. The t-distributed stochastic neighbor embedding (t-SNE) algorithm was combined with the general regression neural network (GRNN) to intelligently detect the health status of the fuel cell system for locomotives. Specifically, t-SNE was used to process the high-dimensionality and strong coupling raw data of health status, enabling the dimensional reduction of the raw data to reflect essential features. Then, GRNN was used to identify the feature data to achieve the fast and accurate detection of the health status of the fuel cell system. Results show that the proposed method can effectively detect four health conditions, namely, normal state, high inlet coolant temperature, low air pressure, and low spray pump pressure, with a diagnostic accuracy of 98.75%. This study is applicable to the analysis of the actual measurement data of high-power level fuel cell systems and provides a reference for the health status detection of fuel cell systems for locomotives. Keywords: fuel cell system for locomotive; data-driven; general regression neural network; t-distributed stochastic neighbor embedding; health status detection


Sign in / Sign up

Export Citation Format

Share Document