Near-Field Edge Extrapolation Using Auxiliary Dipoles to Improve Probe Compensation

2017 ◽  
Vol 59 (2) ◽  
pp. 576-583 ◽  
Author(s):  
Tim Claeys ◽  
Vladimir Volski ◽  
Guy A. E. Vandenbosch ◽  
Davy Pissoort
Keyword(s):  
Author(s):  
Cheng Hu ◽  
Jingyang Wang ◽  
Weiming Tian ◽  
Tao Zeng ◽  
Rui Wang

MIMO (multiple-input multiple-output) radar provides much more flexibility than the traditional radar for its ability to realize far more observation channels than the actual number of T/R (transmit and receive) elements. Designing the array of MIMO imaging radar, the commonly used virtual array theory generally assumes that all elements are placed on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, resulting in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation, leading to inevitable high grating lobes in the imaging result of near-field edge points of the scene observed by common MIMO array. To tackle these problems, this paper derives the relationship between target’s PSF (point spread function) and pattern of T/R arrays, by which the design criterion of near-field imaging MIMO array is presented. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by simulations and an experiment.


2017 ◽  
Vol 25 (20) ◽  
pp. 23935 ◽  
Author(s):  
V. E. Babicheva ◽  
S. Gamage ◽  
M. I. Stockman ◽  
Y. Abate
Keyword(s):  

Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2007 ◽  
Author(s):  
Stuart Gregson ◽  
John McCormick ◽  
Clive Parini

Author(s):  
Daqing Cui ◽  
Ylva Ranebo ◽  
Jeanett Low ◽  
Vincenzo Rondinella ◽  
Jinshan Pan ◽  
...  
Keyword(s):  

Author(s):  
Mondher Dhaouadi ◽  
M. Mabrouk ◽  
T. Vuong ◽  
A. Ghazel

Sign in / Sign up

Export Citation Format

Share Document