scholarly journals Establishing Physical Survivability of Large Networks using Properties of Two-Connected Graphs

Author(s):  
Daryoush Habibi ◽  
Hoang Nguyen ◽  
Quoc Phung ◽  
Kung-meng Lo
Author(s):  
Yang Ni ◽  
Veerabhadran Baladandayuthapani ◽  
Marina Vannucci ◽  
Francesco C. Stingo

AbstractGraphical models are powerful tools that are regularly used to investigate complex dependence structures in high-throughput biomedical datasets. They allow for holistic, systems-level view of the various biological processes, for intuitive and rigorous understanding and interpretations. In the context of large networks, Bayesian approaches are particularly suitable because it encourages sparsity of the graphs, incorporate prior information, and most importantly account for uncertainty in the graph structure. These features are particularly important in applications with limited sample size, including genomics and imaging studies. In this paper, we review several recently developed techniques for the analysis of large networks under non-standard settings, including but not limited to, multiple graphs for data observed from multiple related subgroups, graphical regression approaches used for the analysis of networks that change with covariates, and other complex sampling and structural settings. We also illustrate the practical utility of some of these methods using examples in cancer genomics and neuroimaging.


2021 ◽  
Vol 1751 ◽  
pp. 012023
Author(s):  
F C Puri ◽  
Wamiliana ◽  
M Usman ◽  
Amanto ◽  
M Ansori ◽  
...  
Keyword(s):  

2019 ◽  
Vol 17 (1) ◽  
pp. 1490-1502 ◽  
Author(s):  
Jia-Bao Liu ◽  
Muhammad Javaid ◽  
Mohsin Raza ◽  
Naeem Saleem

Abstract The second smallest eigenvalue of the Laplacian matrix of a graph (network) is called its algebraic connectivity which is used to diagnose Alzheimer’s disease, distinguish the group differences, measure the robustness, construct multiplex model, synchronize the stability, analyze the diffusion processes and find the connectivity of the graphs (networks). A connected graph containing two or three cycles is called a bicyclic graph if its number of edges is equal to its number of vertices plus one. In this paper, firstly the unique graph with a minimum algebraic connectivity is characterized in the class of connected graphs whose complements are bicyclic with exactly three cycles. Then, we find the unique graph of minimum algebraic connectivity in the class of connected graphs $\begin{array}{} {\it\Omega}^c_{n}={\it\Omega}^c_{1,n}\cup{\it\Omega}^c_{2,n}, \end{array}$ where $\begin{array}{} {\it\Omega}^c_{1,n} \end{array}$ and $\begin{array}{} {\it\Omega}^c_{2,n} \end{array}$ are classes of the connected graphs in which the complement of each graph of order n is a bicyclic graph with exactly two and three cycles, respectively.


2021 ◽  
Vol 1076 (1) ◽  
pp. 012034
Author(s):  
Mustafa Maad Hamdi ◽  
Hussain Falih Mahdi ◽  
Mohammed Salah Abood ◽  
Ruaa Qahtan Mohammed ◽  
Abdulkareem Dawah Abbas ◽  
...  

2021 ◽  
Vol 344 (7) ◽  
pp. 112376
Author(s):  
John Engbers ◽  
Lauren Keough ◽  
Taylor Short

Author(s):  
Yinglong Song ◽  
Huey Eng Chua ◽  
Sourav S. Bhowmick ◽  
Byron Choi ◽  
Shuigeng Zhou
Keyword(s):  

2019 ◽  
Vol 342 (11) ◽  
pp. 3047-3056
Author(s):  
Chengfu Qin ◽  
Weihua He ◽  
Kiyoshi Ando

Sign in / Sign up

Export Citation Format

Share Document