Filtering theory for a power system dynamics in the presence of stochastic damping coefficient

Author(s):  
Ravish H. Hirpara ◽  
Ravish H. Hirpara
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4581
Author(s):  
Yuko Hirase ◽  
Yuki Ohara ◽  
Naoya Matsuura ◽  
Takeaki Yamazaki

In the field of microgrids (MGs), steady-state power imbalances and frequency/voltage fluctuations in the transient state have been gaining prominence owing to the advancing distributed energy resources (DERs) connected to MGs via grid-connected inverters. Because a stable, safe power supply and demand must be maintained, accurate analyses of power system dynamics are crucial. However, the natural frequency components present in the dynamics make analyses complex. The nonlinearity and confidentiality of grid-connected inverters also hinder controllability. The MG considered in this study consisted of a synchronous generator (the main power source) and multiple grid-connected inverters with storage batteries and virtual synchronous generator (VSG) control. Although smart inverter controls such as VSG contribute to system stabilization, they induce system nonlinearity. Therefore, Koopman mode decomposition (KMD) was utilized in this study for consideration as a future method of data-driven analysis of the measured frequencies and voltages, and a frequency response analysis of the power system dynamics was performed. The Koopman operator is a linear operator on an infinite dimensional space, whereas the original dynamics is a nonlinear map on a finite state space. In other words, the proposed method can precisely analyze all the dynamics of the power system, which involve the complex nonlinearities caused by VSGs.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2471
Author(s):  
Tommaso Bradde ◽  
Samuel Chevalier ◽  
Marco De Stefano ◽  
Stefano Grivet-Talocia ◽  
Luca Daniel

This paper develops a predictive modeling algorithm, denoted as Real-Time Vector Fitting (RTVF), which is capable of approximating the real-time linearized dynamics of multi-input multi-output (MIMO) dynamical systems via rational transfer function matrices. Based on a generalization of the well-known Time-Domain Vector Fitting (TDVF) algorithm, RTVF is suitable for online modeling of dynamical systems which experience both initial-state decay contributions in the measured output signals and concurrently active input signals. These adaptations were specifically contrived to meet the needs currently present in the electrical power systems community, where real-time modeling of low frequency power system dynamics is becoming an increasingly coveted tool by power system operators. After introducing and validating the RTVF scheme on synthetic test cases, this paper presents a series of numerical tests on high-order closed-loop generator systems in the IEEE 39-bus test system.


Author(s):  
Taulant Kerci ◽  
Mohammed Ahsan Adib Murad ◽  
Ioannis Dassios ◽  
Federico Milano

Author(s):  
Istvan Erlich ◽  
Fekadu Shewarega ◽  
Oliver Scheufeld

Modeling Wind Turbines in the Simulation of Power System DynamicsThis paper deals with the modeling of variable speed wind turbines for stability studies. Using the space-phasor representation and the fundamental relationships governing the operation of the machine quasi stationary model, suitable control algorithms for the simulation of the doubly-fed induction machine (DFIM) as well as the permanent magnet synchronous machine (PMSM) operating on an interconnected system are developed. The control schemes include the pitch-angle/speed control and the decoupled control of the real and reactive power outputs. As an additional modeling option, the generic model for variable speed machine has been introduced. The models were then implemented on a representative test network, and simulations have been carried out to observe the response of the control system to typical abnormal situations such as three phase grid faults to compare the accuracy of the generic models with the detailed quasi-stationary (QSS) models.


Sign in / Sign up

Export Citation Format

Share Document