A Fuzzy Adaptive Approach to Decoupled Visual Servoing for a Wheeled Mobile Robot

Author(s):  
Haobin Shi ◽  
Meng Xu ◽  
Kao-Shing Hwang
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Fujie Wang ◽  
Yi Qin ◽  
Fang Guo ◽  
Bin Ren ◽  
John T. W. Yeow

This paper investigates the stabilization and trajectory tracking problem of wheeled mobile robot with a ceiling-mounted camera in complex environment. First, an adaptive visual servoing controller is proposed based on the uncalibrated kinematic model due to the complex operation environment. Then, an adaptive controller is derived to provide a solution of uncertain dynamic control for a wheeled mobile robot subject to parametric uncertainties. Furthermore, the proposed controllers can be applied to a more general situation where the parallelism requirement between the image plane and operation plane is no more needed. The overparameterization of regressor matrices is avoided by exploring the structure of the camera-robot system, and thus, the computational complexity of the controller can be simplified. The Lyapunov method is employed to testify the stability of a closed-loop system. Finally, simulation results are presented to demonstrate the performance of the suggested control.


Author(s):  
Roman Chertovskih ◽  
Anna Daryina ◽  
Askhat Diveev ◽  
Dmitry Karamzin ◽  
Fernando L. Pereira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document