Visual Servoing for a Wheeled Mobile Robot using Image Moments: Experimental Results

Author(s):  
Alaa Dib ◽  
Houria Siguerdidjane
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Fujie Wang ◽  
Yi Qin ◽  
Fang Guo ◽  
Bin Ren ◽  
John T. W. Yeow

This paper investigates the stabilization and trajectory tracking problem of wheeled mobile robot with a ceiling-mounted camera in complex environment. First, an adaptive visual servoing controller is proposed based on the uncalibrated kinematic model due to the complex operation environment. Then, an adaptive controller is derived to provide a solution of uncertain dynamic control for a wheeled mobile robot subject to parametric uncertainties. Furthermore, the proposed controllers can be applied to a more general situation where the parallelism requirement between the image plane and operation plane is no more needed. The overparameterization of regressor matrices is avoided by exploring the structure of the camera-robot system, and thus, the computational complexity of the controller can be simplified. The Lyapunov method is employed to testify the stability of a closed-loop system. Finally, simulation results are presented to demonstrate the performance of the suggested control.


Author(s):  
Shubhdildeep S. Sohal ◽  
Pinhas Ben-Tzvi

Abstract This paper presents the design integration and experimental results of target-based autonomous locomotion of a Self-Reconfigurable Mobile Robot. Uncertainties in the sensory data can accumulate the misalignments in locomotion behavior of the robot. Such misalignments can result in a poor coupling performance resulting in the failure of the overall docked system. Therefore, it is desirable for a robot to be capable of mechanically tolerating such misalignments. As a result, a Hybrid-Wheeled mobile robot, interfaced with a 2-DOF, high misalignment tolerant coupling (GHEFT) mechanism is presented in this paper. This combined assembly is used as a source of locomotion for autonomous docking in a multi-robot assembly using Image-Based Visual Servoing (IBVS). The resulting output is then implemented in a simulated environment for the autonomous locomotion of the robot. Experimental results demonstrate the feature motion and trajectory followed under the hybrid locomotion of the robot.


2009 ◽  
Vol 21 (5) ◽  
pp. 642-646 ◽  
Author(s):  
Masafumi Hamaguchi ◽  
◽  
Takao Taniguchi

Damping control we propose for sloshing in cylindrical containers carried by a wheeled mobile robot enables the container to tilt independently in the direction of movement and orthogonally through the use of a dual-swing active-vibration reducer. The robot follows a curved sloping path. Sloshing generated by robot movement is damped by the vibration reducer, which keeps the container level on a slope. Vibration reduction is managed by an optimal servo controller having a Kalman filter. Experimental results demonstrate our damping control proposal's usefulness and feasibility.


Robotica ◽  
2009 ◽  
Vol 27 (4) ◽  
pp. 547-553 ◽  
Author(s):  
Roberto S. Inoue ◽  
Adriano A. G. Siqueira ◽  
Marco H. Terra

SUMMARYIn this paper, nonlinear dynamic equations of a wheeled mobile robot are described in the state-space form where the parameters are part of the state (angular velocities of the wheels). This representation, known as quasi-linear parameter varying, is useful for control designs based on nonlinear∞approaches. Two nonlinear∞controllers that guarantee induced2-norm, between input (disturbances) and output signals, bounded by an attenuation level γ, are used to control a wheeled mobile robot. These controllers are solved via linear matrix inequalities and algebraic Riccati equation. Experimental results are presented, with a comparative study among these robust control strategies and the standard computed torque, plus proportional-derivative, controller.


Sign in / Sign up

Export Citation Format

Share Document