Fundamental Analyses on Layered Media Reconstruction Using GPR and Full-Wave Inversion in Near-Field Conditions

2016 ◽  
Vol 54 (9) ◽  
pp. 5143-5158 ◽  
Author(s):  
Alberic De Coster ◽  
Anh Phuong Tran ◽  
Sebastien Lambot
Author(s):  
Daqing Cui ◽  
Ylva Ranebo ◽  
Jeanett Low ◽  
Vincenzo Rondinella ◽  
Jinshan Pan ◽  
...  
Keyword(s):  

2015 ◽  
Vol 7 (3-4) ◽  
pp. 369-377 ◽  
Author(s):  
Alex Pacini ◽  
Alessandra Costanzo ◽  
Diego Masotti

An increasing interest is arising in developing miniaturized antennas in the microwave range. However, even when the adopted antennas dimensions are small compared with the wavelength, radiation performances have to be preserved to keep the system-operating conditions. For this purpose, magneto-dielectric materials are currently exploited as promising substrates, which allows us to reduce antenna dimensions by exploiting both relative permittivity and permeability. In this paper, we address generic antennas in resonant conditions and we develop a general theoretical approach, not based on simplified equivalent models, to establish topologies most suitable for exploiting high permeability and/or high-permittivity substrates, for miniaturization purposes. A novel definition of the region pertaining to the antenna near-field and of the associated field strength is proposed. It is then showed that radiation efficiency and bandwidth can be preserved only by a selected combinations of antenna topologies and substrate characteristics. Indeed, by the proposed independent approach, we confirm that non-dispersive magneto-dielectric materials with relative permeability greater than unit, can be efficiently adopted only by antennas that are mainly represented by equivalent magnetic sources. Conversely, if equivalent electric sources are involved, the antenna performances are significantly degraded. The theoretical results are validated by full-wave numerical simulations of reference topologies.


2016 ◽  
Vol 35 (12) ◽  
pp. 1047-1052 ◽  
Author(s):  
Jean Kormann ◽  
Juan Esteban Rodríguez ◽  
Natalia Gutierrez ◽  
Miguel Ferrer ◽  
Otilio Rojas ◽  
...  
Keyword(s):  

2012 ◽  
Vol 76 (8) ◽  
pp. 3401-3410 ◽  
Author(s):  
M. Felipe-Sotelo ◽  
J. Hinchliff ◽  
N. Evans ◽  
P. Warwick ◽  
D. Read

AbstractThe sorption behaviour of I−, Cs+, Ni2+, Eu3+, Th4+ and UO2+2on NRVB (Nirex reference vault backfill) a possible vault backfill, at pH 12.8 was studied. Sorption isotherms generated were compared to results obtained in the presence of cellulose degradation products (CDP). Whereas Cs was not affected by the presence of the organic compounds, a notable reduction in the sorption of Th and Eu to cement was observed. The results also indicated limited removal of Ni from solution (with or without an organic ligand) by sorption, the concentration in solution seemingly being determined solely by solubility processes. In the case of uranium, the presence of CDP increased the sorption to cement by almost one order of magnitude. Further studies into the uptake of CDP by cement are being undertaken to identify the mechanism(s) responsible.


Sign in / Sign up

Export Citation Format

Share Document