High-efficiency gravity data inversion method based on locally adaptive unstructured meshing

Author(s):  
Guoqing Ma ◽  
Runxin Niu ◽  
Tong Gao ◽  
Lili Li ◽  
Taihan Wang ◽  
...  
Geophysics ◽  
2021 ◽  
pp. 1-34
Author(s):  
Guoqing Ma ◽  
Zongrui Li ◽  
Lili Li ◽  
Taihan Wang

The density inversion of gravity data is commonly achieved by discretizing the subsurface into prismatic cells and calculating the density of each cell. During this process, a weighting function is introduced to the iterative computation to reduce the skin effect during the inversion. Thus, the computation process requires a significant number of matrix operations, which results in low computational efficiency. We have adopted a density inversion method with nonlinear polynomial fitting (NPF) that uses a polynomial to represent the density variation of prismatic cells in a certain space. The computation of each cell is substituted by the computation of the nonlinear polynomial coefficients. Consequently, the efficiency of the inversion is significantly improved because the number of nonlinear polynomial coefficients is less than the number of cells used. Moreover, because representing the density change of all of the cells poses a significant challenge when the cell number is large, we adopt the use of a polynomial to represent the density change of a subregion with fewer cells and multiple nonlinear polynomials to represent the density changes of all prism cells. Using theoretical model tests, we determine that the NPF method more efficiently recovers the density distribution of gravity data compared with conventional density inversion methods. In addition, the density variation of a subregion with 8 × 8 × 8 prismatic cells can be accurately and efficiently obtained using our cubic NPF method, which can also be used for noisy data. Finally, the NPF method was applied to real gravity data in an iron mining area in Shandong Province, China. Convergent results of a 3D perspective view and the distribution of the iron ore bodies were acquired using this method, demonstrating the real-life applicability of this method.


Geophysics ◽  
2020 ◽  
pp. 1-45
Author(s):  
Vitaliy Ogarko ◽  
Jérémie Giraud ◽  
Roland Martin ◽  
Mark Jessell

To reduce uncertainties in reconstructed images, geological information must be introduced in a numerically robust and stable way during the geophysical data inversion procedure. In the context of potential (gravity) data inversion, it is important to bound the physical properties by providing probabilistic information on the number of lithologies and ranges of values of possibly existing related rock properties (densities). For this purpose, we introduce a generalization of bounding constraints for geophysical inversion based on the alternating direction method of multipliers (ADMM). The flexibility of the proposed technique enables us to take into account petrophysical information as well as probabilistic geological modeling, when it is available. The algorithm introduces a priori knowledge in terms of physically acceptable bounds of model parameters based on the nature of the modeled lithofacies in the region under study. Instead of introducing only one interval of geologically acceptable values for each parameter representing a set of rock properties, we define sets of disjoint intervals using the available geological information. Different sets of intervals are tested, such as quasi-discrete (or narrow) intervals as well as wider intervals provided by geological information obtained from probabilistic geological modeling. Narrower intervals can be used as soft constraints encouraging quasi-discrete inversions. The algorithm is first applied to a synthetic 2D case for proof-of-concept validation and then to the 3D inversion of gravity data collected in the Yerrida basin (Western Australia). Numerical convergence tests show the robustness and stability of the bound constraints we apply, which is not always trivial for constrained inversions. This technique can be a more reliable uncertainty reduction method as well as an alternative to other petrophysically or geologically constrained inversions based on more classical “clustering” or Gaussian-mixture approaches.


2018 ◽  
Vol 10 (9) ◽  
pp. 1376 ◽  
Author(s):  
Sijing Ye ◽  
Diyou Liu ◽  
Xiaochuang Yao ◽  
Huaizhi Tang ◽  
Quan Xiong ◽  
...  

In recent years, remote sensing (RS) research on crop growth status monitoring has gradually turned from static spectrum information retrieval in large-scale to meso-scale or micro-scale, timely multi-source data cooperative analysis; this change has presented higher requirements for RS data acquisition and analysis efficiency. How to implement rapid and stable massive RS data extraction and analysis becomes a serious problem. This paper reports on a Raster Dataset Clean & Reconstitution Multi-Grid (RDCRMG) architecture for remote sensing monitoring of vegetation dryness in which different types of raster datasets have been partitioned, organized and systematically applied. First, raster images have been subdivided into several independent blocks and distributed for storage in different data nodes by using the multi-grid as a consistent partition unit. Second, the “no metadata model” ideology has been referenced so that targets raster data can be speedily extracted by directly calculating the data storage path without retrieving metadata records; third, grids that cover the query range can be easily assessed. This assessment allows the query task to be easily split into several sub-tasks and executed in parallel by grouping these grids. Our RDCRMG-based change detection of the spectral reflectance information test and the data extraction efficiency comparative test shows that the RDCRMG is reliable for vegetation dryness monitoring with a slight reflectance information distortion and consistent percentage histograms. Furthermore, the RDCGMG-based data extraction in parallel circumstances has the advantages of high efficiency and excellent stability compared to that of the RDCGMG-based data extraction in serial circumstances and traditional data extraction. At last, an RDCRMG-based vegetation dryness monitoring platform (VDMP) has been constructed to apply RS data inversion in vegetation dryness monitoring. Through actual applications, the RDCRMG architecture is proven to be appropriate for timely vegetation dryness RS automatic monitoring with better performance, more reliability and higher extensibility. Our future works will focus on integrating more kinds of continuously updated RS data into the RDCRMG-based VDMP and integrating more multi-source datasets based collaborative analysis models for agricultural monitoring.


2009 ◽  
Vol 57 (5) ◽  
pp. 1528-1538 ◽  
Author(s):  
Colin Gilmore ◽  
Aria Abubakar ◽  
Wenyi Hu ◽  
Tarek M. Habashy ◽  
Peter M. van den Berg

Solar Physics ◽  
2019 ◽  
Vol 294 (10) ◽  
Author(s):  
James Pickering ◽  
Huw Morgan

Abstract The increasing size of solar datasets demands highly efficient and robust analysis methods. This paper presents an approach that can increase the computational efficiency of differential emission measure (DEM) inversions by an order of magnitude or higher, with the efficiency factor increasing with the size of the input dataset. The method, named the Gridded Solar Iterative Temperature Emission Solver (Grid-SITES) is based on grouping pixels according to the similarity of their intensities in multiple channels, and solving for one DEM per group. This is shown to be a valid approach, given a sufficiently high number of grid bins for each channel. The increase in uncertainty arising from the quantisation of the input data is small compared to the general measurement and calibration uncertainties. In this paper, we use the Solar Iterative Temperature Emission Solver (SITES) as the core method for the DEM inversion, although Grid-SITES provides a general framework which may be used with any DEM inversion method, or indeed any large multi-dimensional data inversion problem. The method is particularly efficient for processing larger images, offering a factor of 30 increase in speed for a 10 megapixel image. For a time series of observations, the gridded results can be passed sequentially to each new image, with new populated bins added as required. This process leads to increasing efficiency with each new image, with potential for a ${\approx\,}100$≈100 increase in efficiency dependent on the size of the images.


Sign in / Sign up

Export Citation Format

Share Document