Novel Phase-Shift Control Technique for Full-Bridge Converter to Reduce Thermal Imbalance Under Light-Load Condition

2015 ◽  
Vol 51 (2) ◽  
pp. 1651-1659 ◽  
Author(s):  
Yen-Shin Lai ◽  
Zih-Jie Su ◽  
Ye-Then Chang
2020 ◽  
Vol 35 (10) ◽  
pp. 11129-11142 ◽  
Author(s):  
Tianhua Zhu ◽  
Fang Zhuo ◽  
Fangzhou Zhao ◽  
Feng Wang ◽  
Hao Yi ◽  
...  

Author(s):  
Tao Lei ◽  
Zicun Lin ◽  
Xiaobin Zhang ◽  
Longchun Li

With the development of the more/All electrical aircraft technology, the dual active bridge converter has been applied to the energy storage device to realize the bidirectional power flow in aircraft electrical system. The power loss of power device in DAB converter affects the operational life of the device and the reliability of the converter. So it is an important performance index to keep the temperature balance for power device in DAB converter. In this paper, the operational mode of dual active bridge bidirectional DC-DC converter in extended-phase-shift (EPS) control is analyzed and verified by experiment, find the reasons for difficult to achieve soft-switching under light load conditions, then proposes a novel thermal balance phase-shift control strategy on the basis of EPS. Experimental methods in this paper are alternation control mode and temperature feedback control mode. The thermal image and temperature was analyzed. The efficiency curve was plotted. The switching waveform was observed. the thermal balance was achieved to verify the effectiveness. and finally achieves the goal for improving the converter efficiency, reduces the devices heat stress, improves the reliability of the DAB converters and increases device lifetime.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2836
Author(s):  
Nuraina Syahira Mohd Sharifuddin ◽  
Nadia M. L. Tan ◽  
Hirofumi Akagi

This paper presents the performance of a three-phase bidirectional isolated DC-DC converter (3P-BIDC) in wye-wye (Yy), wye-delta (Yd), delta-wye (Dy), and delta-delta (Dd) transformer configurations, using enhanced switching strategy that combines phase-shift modulation and burst-mode switching. A simulation verification using PSCAD is carried out to study the feasibility and compare the efficiency performance of the 3P-BIDC with each transformer configuration, using intermittent switching, which combines the conventional phase-shift modulation (PSM) and burst-mode switching, in the light load condition. The model is tested with continuous switching that employs the conventional PSM from medium to high loads (greater than 0.3 p.u.) and with intermittent switching at light load (less than 0.3 p.u), in different transformer configurations. In all tests, the DC-link voltages are equal to the transformer turns ratio of 1:1. This paper also presents the power loss estimation in continuous and intermittent switching to verify the modelled losses in the 3P-BIDC in the Yy transformer configuration. The 3P-BIDC is modelled by taking into account the effects that on-state voltage drop in the insulated-gate bipolar transistor (IGBTs) and diodes, snubber capacitors, and three-phase transformer copper winding resistances will have on the conduction and switching losses, and copper losses in the 3P-BIDC. The intermitting switching improves the efficiency of the DC-DC converter with Yy, Yd, Dy, and Dd connections in light-load operation. The 3P-BIDC has the best efficiency performance using Yy and Dd transformer configurations for all power transfer conditions in continuous and intermittent switching. Moreover, the highest efficiency of 99.6% is achieved at the light power transfer of 0.29 p.u. in Yy and Dd transformer configurations. However, the theoretical current stress in the 3P-BIDC with a Dd transformer configuration is high. Operation of the converter with Dy transformer configuration is less favorable due to the efficiency achievements of lower than 95%, despite burst-mode switching being applied.


2018 ◽  
Vol 33 (6) ◽  
pp. 4584-4588 ◽  
Author(s):  
Allan Taylor ◽  
Guanliang Liu ◽  
Hua Bai ◽  
Alan Brown ◽  
Philip Mike Johnson ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1623
Author(s):  
Jun-Mo Kim ◽  
Jeong Lee ◽  
Kyung Ryu ◽  
Chung-Yuen Won

In this paper, a switching method is proposed for power device temperature-balancing in a phase-shift full-bridge (PSFB) converter. PSFB is commonly used for applications that require high efficiency, because a zero-voltage switching (ZVS) operation is possible on the primary-side. In PSFB, the circulation current complicates ZVS under a light-load condition, which generates heat. Meanwhile, the heat generated in PSFB creates a temperature deviation between the lagging leg and the leading leg, which shortens the lifetime of the power device, thereby reducing system reliability and efficiency. To solve this problem, previous studies applied a pulse-width modulation (PWM) switching method for light and medium loads, and a phase-shift switching method for the region where ZVS is possible. Although this method has the advantage of easy control, the maximum temperature of the legs of the PSFB increases with medium loads. In this paper, a temperature-balancing algorithm—a temperature-balance control—is proposed to decrease the leg temperature using switching based on position exchanges of the leading leg and lagging leg along with PWM switching. Temperature-balance control minimizes leg temperature deviation under light load conditions. The proposed control method provides a minimum temperature difference between the two legs and high efficiency.


Sign in / Sign up

Export Citation Format

Share Document