intermittent switching
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

2020 ◽  
Vol 30 (1) ◽  
pp. 015038
Author(s):  
Yushin Hara ◽  
Meng Zhou ◽  
An Li ◽  
Keisuke Otsuka ◽  
Kanjuro Makihara

2020 ◽  
Author(s):  
Huawei Fan ◽  
Ling-Wei Kong ◽  
Xingang Wang ◽  
Alan Hastings ◽  
Ying-Cheng Lai

Abstract Transients are fundamental to ecological systems with significant implications to management, conservation, and biological control. We uncover a type of transient synchronization behavior in spatial ecological networks whose local dynamics are of the chaotic, predator-prey type. In the parameter regime where there is phase synchronization among all the patches, complete synchronization (i.e., synchronization in both phase and amplitude) can arise in certain pairs of patches as determined by the network symmetry - henceforth the phenomenon of “synchronization within synchronization.” Distinct patterns of complete synchronization coexist but, due to intrinsic instability or noise, each pattern is a transient and there is random, intermittent switching among the patterns in the course of time evolution. The probability distribution of the transient time is found to follow an algebraic scaling law with a divergent average transient lifetime. Based on symmetry considerations, we develop a stability analysis to understand these phenomena. The general principle of symmetry can also be exploited to explain previously discovered, counterintuitive synchronization behaviors in ecological networks.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2836
Author(s):  
Nuraina Syahira Mohd Sharifuddin ◽  
Nadia M. L. Tan ◽  
Hirofumi Akagi

This paper presents the performance of a three-phase bidirectional isolated DC-DC converter (3P-BIDC) in wye-wye (Yy), wye-delta (Yd), delta-wye (Dy), and delta-delta (Dd) transformer configurations, using enhanced switching strategy that combines phase-shift modulation and burst-mode switching. A simulation verification using PSCAD is carried out to study the feasibility and compare the efficiency performance of the 3P-BIDC with each transformer configuration, using intermittent switching, which combines the conventional phase-shift modulation (PSM) and burst-mode switching, in the light load condition. The model is tested with continuous switching that employs the conventional PSM from medium to high loads (greater than 0.3 p.u.) and with intermittent switching at light load (less than 0.3 p.u), in different transformer configurations. In all tests, the DC-link voltages are equal to the transformer turns ratio of 1:1. This paper also presents the power loss estimation in continuous and intermittent switching to verify the modelled losses in the 3P-BIDC in the Yy transformer configuration. The 3P-BIDC is modelled by taking into account the effects that on-state voltage drop in the insulated-gate bipolar transistor (IGBTs) and diodes, snubber capacitors, and three-phase transformer copper winding resistances will have on the conduction and switching losses, and copper losses in the 3P-BIDC. The intermitting switching improves the efficiency of the DC-DC converter with Yy, Yd, Dy, and Dd connections in light-load operation. The 3P-BIDC has the best efficiency performance using Yy and Dd transformer configurations for all power transfer conditions in continuous and intermittent switching. Moreover, the highest efficiency of 99.6% is achieved at the light power transfer of 0.29 p.u. in Yy and Dd transformer configurations. However, the theoretical current stress in the 3P-BIDC with a Dd transformer configuration is high. Operation of the converter with Dy transformer configuration is less favorable due to the efficiency achievements of lower than 95%, despite burst-mode switching being applied.


2019 ◽  
Vol 870 ◽  
Author(s):  
Navrose ◽  
Sanjay Mittal

Vortex-induced vibration of a circular cylinder that is free to move in the transverse ($Y$) and streamwise ($X$) directions is investigated at subcritical Reynolds numbers ($1500\lesssim Re\lesssim 9000$) via three-dimensional (3-D) numerical simulations. The mass ratio of the system for all the simulations is $m^{\ast }=10$. It is observed that while some of the characteristics associated with the $XY$-oscillation are similar to those of the $Y$-only oscillation (in line with the observations made by Jauvtis & Williamson (J. Fluid Mech., vol. 509, 2004, pp. 23–62)), notable differences exist between the two systems with respect to the transition between the branches of the cylinder response in the lock-in regime. The flow regime between the initial and lower branch is characterized by intermittent switching in the cylinder response, aerodynamic coefficients and modes of vortex shedding. Similar to the regime of laminar flow, the system exhibits a hysteretic response near the lower- and higher-$Re$ end of the lock-in regime. The frequency spectrum of time history of the cylinder response shows that the most dominant frequency in the streamwise oscillation on the initial branch is the same as that of the transverse oscillation.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Violet Mwaffo ◽  
Jishnu Keshavan ◽  
Tyson L. Hedrick ◽  
Sean Humbert

Sign in / Sign up

Export Citation Format

Share Document