Integration Operator Design for Real-Time Digital Simulation

1985 ◽  
Vol IE-32 (4) ◽  
pp. 393-398 ◽  
Author(s):  
Tom T. Hartley ◽  
Guy O. Beale
2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
S. Umashankar ◽  
Mandar Bhalekar ◽  
Surabhi Chandra ◽  
D. Vijayakumar ◽  
D. P. Kothari

This paper presents the research platform for real-time digital simulation applications which replaces the requirement for full-scale or partial-scale validation of physical systems. To illustrate this, a three-phase AC-DC-AC converter topology has been used consists of diode rectifier, DC link, and an IGBT inverter with inductive load. In this topology, rectifier as well as inverter decoupled and solved separately using decoupled method, which results in the reduced order system so that it is easy to solve the state equation. This method utilizes an analytical approach to formulate the state equations, and interpolation methods have been implemented to rectify the zero-crossing errors, with fixed step size of 100 μsec is used. The proposed algorithm and the model have been validated using MATLAB simulation as m-file program and also in real-time DSP controller domain. The performance of the real-time system model is evaluated based on accuracy, zero crossing, and step size.


Sign in / Sign up

Export Citation Format

Share Document