scholarly journals Development of a New Research Platform for Electrical Drive System Modelling for Real-Time Digital Simulation Applications

2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
S. Umashankar ◽  
Mandar Bhalekar ◽  
Surabhi Chandra ◽  
D. Vijayakumar ◽  
D. P. Kothari

This paper presents the research platform for real-time digital simulation applications which replaces the requirement for full-scale or partial-scale validation of physical systems. To illustrate this, a three-phase AC-DC-AC converter topology has been used consists of diode rectifier, DC link, and an IGBT inverter with inductive load. In this topology, rectifier as well as inverter decoupled and solved separately using decoupled method, which results in the reduced order system so that it is easy to solve the state equation. This method utilizes an analytical approach to formulate the state equations, and interpolation methods have been implemented to rectify the zero-crossing errors, with fixed step size of 100 μsec is used. The proposed algorithm and the model have been validated using MATLAB simulation as m-file program and also in real-time DSP controller domain. The performance of the real-time system model is evaluated based on accuracy, zero crossing, and step size.

2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Erhan Yumuk ◽  
Müjde Güzelkaya ◽  
İbrahim Eksin

Abstract In this study, a novel design method for half-cycle and modified posicast controller structures is proposed for a class of the fractional order systems. In this method, all required design variable values, namely, the input step magnitudes and their application times are obtained as functions of fractional system parameters. Moreover, empirical formulas are obtained for the overshoot values of the compensated system with half-cycle and modified posicast controllers designed utilizing this method. The proposed design methodology has been tested via simulations and ball balancing real-time system. It is observed that the derived formulas are in coherence with outcomes of the simulation and real-time application. Furthermore, the performance of modified posicast controller designed using proposed method is much better than other posicast control method.


Author(s):  
Masoud Pourali ◽  
Ali Mosleh

Sensors are being increasingly used for real–time health monitoring of complex systems. The measured quantities are expected to provide real–time information about the state of the system, its subsystems, components, and internal and external physical parameters. A complex system normally requires many sensors to extract required information from the sensed environment. The increasing costs of aging systems and infrastructures have become a major concern and real–time health monitoring systems could ensure increased safety and reliability of these systems. Real–time system health monitoring, assesses the state of systems’ health and, through appropriate data processing and interpretation, can predict the remaining life of the system. This paper introduces a method based on Bayesian networks and attempts to find optimum locations of sensors for the best estimate a system health. Information metrics are used for optimized sensor placement based on the value of information that each possible sensor placement scenario provides.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
S. Ewins Pon Pushpa ◽  
Manamalli Devasikamani

System modelling with a unified modelling language (UML) is an active research area for developing real-time system development. UML is widely used modelling language in software engineering community, to specify the requirement, and analyse the target system successfully. UML can be used to provide multiple views of the system under design with the help of a variety of structural and behavioural diagrams at an early stage. UML-RT (unified modelling language-real time) is a language used to build an unambiguous executable specification of a real-time system based on UML concepts. This paper presents a unified modeling approach for a newly proposed rate monotonic scheduling algorithm-shortest job first (RMA-SJF) for partitioned, semipartitioned and global scheduling strategies in multiprocessor architecture using UML-RT for different system loads. As a technical contribution, effective processor utilization of individual processors and success ratio are analyzed for various scheduling principles and compared with EDF and D_EDF to validate our proposal.


2015 ◽  
Vol 2 (1) ◽  
pp. 35-41
Author(s):  
Rivan Risdaryanto ◽  
Houtman P. Siregar ◽  
Dedy Loebis

The real-time system is now used on many fields, such as telecommunication, military, information system, evenmedical to get information quickly, on time and accurate. Needless to say, a real-time system will always considerthe performance time. In our application, we define the time target/deadline, so that the system should execute thewhole tasks under predefined deadline. However, if the system failed to finish the tasks, it will lead to fatal failure.In other words, if the system cannot be executed on time, it will affect the subsequent tasks. In this paper, wepropose a real-time system for sending data to find effectiveness and efficiency. Sending data process will beconstructed in MATLAB and sending data process has a time target as when data will send.


Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 73-78
Author(s):  
Igor В. Fominykh ◽  
◽  
Sergey V. Romanchuk ◽  
Nikolay Р. Alekseev ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document