Acceleration Measurement Drift Rejection in Motion Control Systems by Augmented-State Kinematic Kalman Filter

2016 ◽  
Vol 63 (3) ◽  
pp. 1953-1961 ◽  
Author(s):  
Riccardo Antonello ◽  
Kazuaki Ito ◽  
Roberto Oboe
1994 ◽  
Vol 82 (8) ◽  
pp. 1287-1302 ◽  
Author(s):  
N. Mohan ◽  
W.P. Robbins ◽  
T.M. Undeland ◽  
R. Nilssen

2012 ◽  
Vol 459 ◽  
pp. 75-78
Author(s):  
Lian Jun Hu ◽  
Xiao Hui Zeng ◽  
Gui Xu Chen ◽  
Hong Song

An automatic control system for multi-axes motions based on multi-CPU embedded systems is proposed in the paper, in order to overcome insufficiencies of available multi-axes automatic dispensing control systems. It is shown from experimental results that expected control objectives for multi-axes motions are achieved.


Author(s):  
Vladimir F. Telezhkin ◽  
◽  
Bekhruz B. Saidov ◽  

In this paper, we investigate the problem of improving data quality using the Kalman filter in Matlab Simulink. Recently, this filter has become one of the most common algorithms for filtering and processing data in the implementation of control systems (including automated control systems) and the creation of software systems for digital filtering from noise and interference, for example, speech signals. It is also widely used in many fields of science and technology. Due to its simplicity and efficiency, it can be found in GPS receivers, in devices for processing sensor readings for various purposes, etc. It is known that one of the important tasks that should be solved in systems for processing sensor readings is the ability to detect and filter noise. Sensor noise leads to unstable measurement data. This, of course, ultimately leads to a decrease in the accuracy and performance of the control device. One of the methods that can be used to solve the problem of optimal filtering is the development of cybernetic algorithms based on the Kalman and Wiener filters. The filtering process can be carried out in two forms, namely: hardware and software algorithms. Hardware filtering can be built electronically. However, it is less efficient as it requires additional circuitry in the system. To overcome this obstacle, you can use filtering in the form of programming algorithms in a single method. In addition to the fact that it does not require electronic hardware circuitry, the filtering performed is even more accurate because it uses a computational process. The paper analyzes the results of applying the Kalman filter to eliminate errors when measuring the coordinates of the tracked target, to obtain a "smoothed" trajectory and shows the results of the filter development process when processing an electrocardiogram. The development of the Kalman filter algorithm is based on the procedure of recursive assessment of the measured state of the research object.


Sign in / Sign up

Export Citation Format

Share Document