Fuzzy Disturbance Observer-Based Adaptive Sliding Mode Control for Reusable Launch Vehicles With Aeroservoelastic Characteristic

2020 ◽  
Vol 16 (2) ◽  
pp. 1214-1223 ◽  
Author(s):  
Qi Mao ◽  
Liqian Dou ◽  
Zhenshu Yang ◽  
Bailing Tian ◽  
Qun Zong
2018 ◽  
Vol 41 (1) ◽  
pp. 276-284 ◽  
Author(s):  
Jianguo Guo ◽  
Yuchao Liu ◽  
Jun Zhou

An adaptive sliding mode control (ASMC) approach for a second-order system based on an extended disturbance observer (EDO) is proposed in this paper for systems with mismatched uncertainties. The EDO-based ASMC method is investigated to eliminate the effect of mismatched disturbance by using a novel adaptive sliding surface consisting of the disturbance estimation. The proposed method exhibits the following two attractive features: Firstly, the proposed adaptive sliding mode with disturbance estimation is insensitive to the mismatched disturbance; that is, the asymptotical stability of the adaptive sliding mode can be guaranteed in the presence of the disturbance estimation error of the EDO. Secondly, the chattering in traditional sliding mode control methods is eliminated by using an adaptive term the adaptive parameter. Compared with the disturbance-observer-based sliding mode control and the EDO-based modified sliding mode control method, numerical simulation results and application examples show that the proposed approach is robust, has the best dynamic performance and eliminates chattering.


Author(s):  
Quan Zou

The design and implementation of adaptive sliding mode control with disturbance observer for chain driving system driven by permanent magnet synchronous motor with parameter variation, meshing impact and large friction are addressed in this study. First, an adaptive model compensation control law is designed for perfect position tracking, while a nonlinear disturbance observer is investigated to estimate the normalized disturbance, which is fast changing due to the severe polygon effect, the meshing impact and so on. To further improve the robustness and the control performance, the translation-width idea is embedded into the adaptive sliding mode control with disturbance observer system, which can suppress the chattering phenomenon caused by imperfect switching in traditional sliding mode control. Moreover, the translation width is online updated using an adaptive mechanism, which is delivered in the Lyapunov sense. Thus, the stability of the closed-loop system is guaranteed in the Lyapunov stability theorem sense. Experimental results show that the proposed adaptive sliding mode control with disturbance observer scheme is insensitive to parameter variation, meshing impact, large friction and so on, and has a better control performance compared with the traditional adaptive sliding mode control and the disturbance observer–based sliding mode control.


Sign in / Sign up

Export Citation Format

Share Document