Lower Bounds for Binary Codes of Covering Radius One

2007 ◽  
Vol 53 (8) ◽  
pp. 2880-2881 ◽  
Author(s):  
W. Haas
10.37236/1281 ◽  
1996 ◽  
Vol 3 (2) ◽  
Author(s):  
Laurent Habsieger

In [5], we studied binary codes with covering radius one via their characteristic functions. This gave us an easy way of obtaining congruence properties and of deriving interesting linear inequalities. In this paper we extend this approach to ternary covering codes. We improve on lower bounds for ternary $1$-covering codes, the so-called football pool problem, when $3$ does not divide $n-1$. We also give new lower bounds for some covering codes with a covering radius greater than one.


2010 ◽  
Vol 2 (3) ◽  
pp. 489
Author(s):  
M. Basu ◽  
S. Bagchi

The minimum average Hamming distance of binary codes of length n and cardinality M is denoted by b(n,M). All the known lower bounds b(n,M) are useful when M is at least of size about 2n-1/n . In this paper, for large n, we improve upper and lower bounds for b(n,M). Keywords: Binary code; Hamming distance; Minimum average Hamming distance. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v2i3.2708                  J. Sci. Res. 2 (3), 489-493 (2010) 


10.37236/969 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Wolfgang Haas ◽  
Jörn Quistorff

Let $R$, $S$ and $T$ be finite sets with $|R|=r$, $|S|=s$ and $|T|=t$. A code $C\subset R\times S\times T$ with covering radius $1$ and minimum distance $2$ is closely connected to a certain generalized partial Latin rectangle. We present various constructions of such codes and some lower bounds on their minimal cardinality $K(r,s,t;2)$. These bounds turn out to be best possible in many instances. Focussing on the special case $t=s$ we determine $K(r,s,s;2)$ when $r$ divides $s$, when $r=s-1$, when $s$ is large, relative to $r$, when $r$ is large, relative to $s$, as well as $K(3r,2r,2r;2)$. Some open problems are posed. Finally, a table with bounds on $K(r,s,s;2)$ is given.


10.37236/945 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Wolfgang Haas

Let $k_3(n)$ denote the minimal cardinality of a ternary code of length $n$ and covering radius one. In this paper we show $k_3(7)\ge 156$ and $k_3(8)\ge 402$ improving on the best previously known bounds $k_3(7)\ge 153$ and $k_3(8)\ge 398$. The proofs are founded on a recent technique of the author for dealing with systems of linear inequalities satisfied by the number of elements of a covering code, that lie in $k$-dimensional subspaces of F${}_3^n$.


1991 ◽  
Vol 37 (2) ◽  
pp. 372-375 ◽  
Author(s):  
H.S. Honkala ◽  
H.O. Hamalainen
Keyword(s):  

2000 ◽  
Vol 219 (1-3) ◽  
pp. 97-106 ◽  
Author(s):  
Wolfgang Haas
Keyword(s):  

10.37236/222 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Wolfgang Haas ◽  
Immanuel Halupczok ◽  
Jan-Christoph Schlage-Puchta

Let $K_q(n,R)$ denote the minimal cardinality of a $q$-ary code of length $n$ and covering radius $R$. Recently the authors gave a new proof of a classical lower bound of Rodemich on $K_q(n,n-2)$ by the use of partition matrices and their transversals. In this paper we show that, in contrast to Rodemich's original proof, the method generalizes to lower-bound $K_q(n,n-k)$ for any $k>2$. The approach is best-understood in terms of a game where a winning strategy for one of the players implies the non-existence of a code. This proves to be by far the most efficient method presently known to lower-bound $K_q(n,R)$ for large $R$ (i.e. small $k$). One instance: the trivial sphere-covering bound $K_{12}(7,3)\geq 729$, the previously best bound $K_{12}(7,3)\geq 732$ and the new bound $K_{12}(7,3)\geq 878$.


Sign in / Sign up

Export Citation Format

Share Document