Instance-Dependent ℓ∞-Bounds for Policy Evaluation in Tabular Reinforcement Learning

2021 ◽  
Vol 67 (1) ◽  
pp. 566-585
Author(s):  
Ashwin Pananjady ◽  
Martin J. Wainwright
Author(s):  
Clement Leung ◽  
Nikki Lijing Kuang ◽  
Vienne W. K. Sung

Organizations need to constantly learn, develop, and evaluate new strategies and policies for their effective operation. Unsupervised reinforcement learning is becoming a highly useful tool, since rewards and punishments in different forms are pervasive and present in a wide variety of decision-making scenarios. By observing the outcome of a sufficient number of repeated trials, one would gradually learn the value and usefulness of a particular policy or strategy. However, in a given environment, the outcomes resulting from different trials are subject to external chance influence and variations. In learning about the usefulness of a given policy, significant costs are involved in systematically undertaking the sequential trials; therefore, in most learning episodes, one would wish to keep the cost within bounds by adopting learning efficient stopping rules. In this Chapter, we explain the deployment of different learning strategies in given environments for reinforcement learning policy evaluation and review, and we present suggestions for their practical use and applications.


2020 ◽  
Vol 34 (04) ◽  
pp. 3701-3708
Author(s):  
Gal Dalal ◽  
Balazs Szorenyi ◽  
Gugan Thoppe

Policy evaluation in reinforcement learning is often conducted using two-timescale stochastic approximation, which results in various gradient temporal difference methods such as GTD(0), GTD2, and TDC. Here, we provide convergence rate bounds for this suite of algorithms. Algorithms such as these have two iterates, θn and wn, which are updated using two distinct stepsize sequences, αn and βn, respectively. Assuming αn = n−α and βn = n−β with 1 > α > β > 0, we show that, with high probability, the two iterates converge to their respective solutions θ* and w* at rates given by ∥θn - θ*∥ = Õ(n−α/2) and ∥wn - w*∥ = Õ(n−β/2); here, Õ hides logarithmic terms. Via comparable lower bounds, we show that these bounds are, in fact, tight. To the best of our knowledge, ours is the first finite-time analysis which achieves these rates. While it was known that the two timescale components decouple asymptotically, our results depict this phenomenon more explicitly by showing that it in fact happens from some finite time onwards. Lastly, compared to existing works, our result applies to a broader family of stepsizes, including non-square summable ones.


Automatica ◽  
2022 ◽  
Vol 136 ◽  
pp. 110092
Author(s):  
Xingyu Sha ◽  
Jiaqi Zhang ◽  
Keyou You ◽  
Kaiqing Zhang ◽  
Tamer Başar

Author(s):  
Lei Le ◽  
Raksha Kumaraswamy ◽  
Martha White

A variety of representation learning approaches have been investigated for reinforcement learning; much less attention, however, has been given to investigating the utility of sparse coding. Outside of reinforcement learning, sparse coding representations have been widely used, with non-convex objectives that result in discriminative representations. In this work, we develop a supervised sparse coding objective for policy evaluation. Despite the non-convexity of this objective, we prove that all local minima are global minima, making the approach amenable to simple optimization strategies. We empirically show that it is key to use a supervised objective, rather than the more straightforward unsupervised sparse coding approach. We then compare the learned representations to a canonical fixed sparse representation, called tile-coding, demonstrating that the sparse coding representation outperforms a wide variety of tile-coding representations.


2021 ◽  
Author(s):  
Shicong Cen ◽  
Chen Cheng ◽  
Yuxin Chen ◽  
Yuting Wei ◽  
Yuejie Chi

Preconditioning and Regularization Enable Faster Reinforcement Learning Natural policy gradient (NPG) methods, in conjunction with entropy regularization to encourage exploration, are among the most popular policy optimization algorithms in contemporary reinforcement learning. Despite the empirical success, the theoretical underpinnings for NPG methods remain severely limited. In “Fast Global Convergence of Natural Policy Gradient Methods with Entropy Regularization”, Cen, Cheng, Chen, Wei, and Chi develop nonasymptotic convergence guarantees for entropy-regularized NPG methods under softmax parameterization, focusing on tabular discounted Markov decision processes. Assuming access to exact policy evaluation, the authors demonstrate that the algorithm converges linearly at an astonishing rate that is independent of the dimension of the state-action space. Moreover, the algorithm is provably stable vis-à-vis inexactness of policy evaluation. Accommodating a wide range of learning rates, this convergence result highlights the role of preconditioning and regularization in enabling fast convergence.


Sign in / Sign up

Export Citation Format

Share Document