scholarly journals An Asymptotic Theory of Joint Sequential Changepoint Detection and Identification for General Stochastic Models

Author(s):  
Alexander G. Tartakovsky
2010 ◽  
Vol 42 (03) ◽  
pp. 816-833 ◽  
Author(s):  
Takayuki Osogami

We introduce a formal limit, which we refer to as a fluid limit, of scaled stochastic models for a cache managed with the least-recently-used algorithm when requests are issued according to general stochastic point processes. We define our fluid limit as a superposition of dependent replications of the original system with smaller item sizes when the number of replications approaches ∞. We derive the average probability that a requested item is not in a cache (average miss probability) in the fluid limit. We show that, when requests follow inhomogeneous Poisson processes, the average miss probability in the fluid limit closely approximates that in the original system. Also, we compare the asymptotic characteristics, as the cache size approaches ∞, of the average miss probability in the fluid limit to those in the original system.


2010 ◽  
Vol 42 (3) ◽  
pp. 816-833 ◽  
Author(s):  
Takayuki Osogami

We introduce a formal limit, which we refer to as a fluid limit, of scaled stochastic models for a cache managed with the least-recently-used algorithm when requests are issued according to general stochastic point processes. We define our fluid limit as a superposition of dependent replications of the original system with smaller item sizes when the number of replications approaches ∞. We derive the average probability that a requested item is not in a cache (average miss probability) in the fluid limit. We show that, when requests follow inhomogeneous Poisson processes, the average miss probability in the fluid limit closely approximates that in the original system. Also, we compare the asymptotic characteristics, as the cache size approaches ∞, of the average miss probability in the fluid limit to those in the original system.


Author(s):  
Savas Dayanik ◽  
Kazutoshi Yamazaki

AbstractThis paper revisits a unified framework of sequential change-point detection and hypothesis testing modeled using hidden Markov chains and develops its asymptotic theory. Given a sequence of observations whose distributions are dependent on a hidden Markov chain, the objective is to quickly detect critical events, modeled by the first time the Markov chain leaves a specific set of states, and to accurately identify the class of states that the Markov chain enters. We propose computationally tractable sequential detection and identification strategies and obtain sufficient conditions for the asymptotic optimality in two Bayesian formulations. Numerical examples are provided to confirm the asymptotic optimality.


Sign in / Sign up

Export Citation Format

Share Document