Efficient Traffic State Estimation for Large-Scale Urban Road Networks

2013 ◽  
Vol 14 (1) ◽  
pp. 398-407 ◽  
Author(s):  
Qing-Jie Kong ◽  
Qiankun Zhao ◽  
Chao Wei ◽  
Yuncai Liu
Author(s):  
Yiming Gu ◽  
Zhen (Sean) Qian ◽  
Guohui Zhang

Traffic state estimation (TSE) is used for real-time estimation of the traffic characteristics (such as flow rate, flow speed, and flow density) of each link in a transportation network, provided with sparse observations. The complex urban road dynamics and flow entry and exit on urban roads challenge the application of TSE on large-scale urban road networks. Because of increasingly available data from various sources, such as cell phones, GPS, probe vehicles, and inductive loops, a theoretical framework is needed to fuse all data to best estimate traffic states in large-scale urban networks. In this context, a Bayesian probabilistic model to estimate traffic states is proposed, along with an expectation–maximization extended Kalman filter (EM-EKF) algorithm. The model incorporates a mesoscopic traffic flow propagation model (the link queue model) that can be computationally efficient for large-scale networks. The Bayesian framework can seamlessly integrate multiple data sources for best inferring flow propagation and flow entry and exit along roads. A synthetic test bed was created. The experiments show that the EM-EKF algorithm can promptly estimate traffic states. Another advantage is that the EM-EKF can update its model parameters in real time to adapt to unknown traffic incidents, such as lane closures. Finally, the proposed methodology was applied to estimating travel speed for an urban network in the Washington, D.C., area and resulted in satisfactory estimation results with an 8.5% error rate.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1996
Author(s):  
Hoe Kyoung Kim ◽  
Younshik Chung ◽  
Minjeong Kim

Traffic flow data, such as flow, density and speed, are crucial for transportation planning and traffic system operation. Recently, a novel traffic state estimating method was proposed using the distance to a leading vehicle measured by an advanced driver assistance system (ADAS) camera. This study examined the effect of an ADAS camera with enhanced capabilities on traffic state estimation using image-based vehicle identification technology. Considering the realistic distance error of the ADAS camera from the field experiment, a microscopic simulation model, VISSIM, was employed with multiple underlying parameters such as the number of lanes, traffic demand, the penetration rate of ADAS vehicles and the spatiotemporal range of the estimation area. Although the enhanced functions of the ADAS camera did not affect the accuracy of the traffic state estimates significantly, the ADAS camera can be used for traffic state estimation. Furthermore, the vehicle identification distance of the ADAS camera and traffic conditions with more lanes did not always ensure better accuracy of the estimates. Instead, it is recommended that transportation planners and traffic engineering practitioners carefully select the relevant parameters and their range to ensure a certain level of accuracy for traffic state estimates that suit their purposes.


Sign in / Sign up

Export Citation Format

Share Document