scholarly journals DeHIN: A Decentralized Framework for Embedding Large-scale Heterogeneous Information Networks

Author(s):  
Mubashir Imran ◽  
Hongzhi Yin ◽  
Tong Chen ◽  
Zi Huang ◽  
Kai Zheng
Author(s):  
Yang Fang ◽  
Xiang Zhao ◽  
Zhen Tan

In this paper, we propose a novel network representation learning model TransPath to encode heterogeneous information networks (HINs). Traditional network representation learning models aim to learn the embeddings of a homogeneous network. TransPath is able to capture the rich semantic and structure information of a HIN via meta-paths. We take advantage of the concept of translation mechanism in knowledge graph which regards a meta-path, instead of an edge, as a translating operation from the first node to the last node. Moreover, we propose a user-guided meta-path sampling strategy which takes users' preference as a guidance, which could explore the semantics of a path more precisely, and meanwhile improve model efficiency via the avoidance of other noisy and meaningless meta-paths. We evaluate our model on two large-scale real-world datasets DBLP and YELP, and two benchmark tasks similarity search and node classification. We observe that TransPath outperforms other state-of-the-art baselines consistently and significantly.


2019 ◽  
Vol 19 (S6) ◽  
Author(s):  
Xintian Chen ◽  
Chunyang Ruan ◽  
Yanchun Zhang ◽  
Huijuan Chen

Abstract Background Traditional Chinese medicine (TCM) is a highly important complement to modern medicine and is widely practiced in China and in many other countries. The work of Chinese medicine is subject to the two factors of the inheritance and development of clinical experience of famous Chinese medicine practitioners and the difficulty in improving the service capacity of basic Chinese medicine practitioners. Heterogeneous information networks (HINs) are a kind of graphical model for integrating and modeling real-world information. Through HINs, we can integrate and model the large-scale heterogeneous TCM data into structured graph data and use this as a basis for analysis. Methods Mining categorizations from TCM data is an important task for precision medicine. In this paper, we propose a novel structured learning model to solve the problem of formula regularity, a pivotal task in prescription optimization. We integrate clustering with ranking in a heterogeneous information network. Results The results from experiments on the Pharmacopoeia of the People’s Republic of China (ChP) demonstrate the effectiveness and accuracy of the proposed model for discovering useful categorizations of formulas. Conclusions We use heterogeneous information networks to model TCM data and propose a TCM-HIN. Combining the heterogeneous graph with the probability graph, we proposed the TCM-Clus algorithm, which combines clustering with ranking and classifies traditional Chinese medicine prescriptions. The results of the categorizations can help Chinese medicine practitioners to make clinical decision.


2016 ◽  
Vol 43 (2) ◽  
pp. 186-203 ◽  
Author(s):  
Dan Yin ◽  
Hong Gao

OLAP (On-line Analytical Processing) can provide users with aggregate results from different perspectives and granularities. With the advent of heterogeneous information networks that consist of multi-type, interconnected nodes, such as bibliographic networks and knowledge graphs, it is important to study flexible aggregation in such networks. The aggregation results by existing work are limited to one type of node, which cannot be applied to aggregation on multi-type nodes, and relations in large-scale heterogeneous information networks. In this paper, we investigate the flexible aggregation problem on large-scale heterogeneous information networks, which is defined on multi-type nodes and relations. Moreover, by considering both attributes and structures, we propose a novel function based on graph entropy to measure the similarities of nodes. Further, we prove that the aggregation problem based on the function is NP-hard. Therefore, we develop an efficient heuristic algorithm for aggregation in two phases: informational aggregation and structural aggregation. The algorithm has linear time and space complexity. Extensive experiments on real-world datasets demonstrate the effectiveness and efficiency of the proposed algorithm.


2020 ◽  
Vol 34 (04) ◽  
pp. 6094-6101
Author(s):  
Guojia Wan ◽  
Bo Du ◽  
Shirui Pan ◽  
Gholameza Haffari

Meta-paths are important tools for a wide variety of data mining and network analysis tasks in Heterogeneous Information Networks (HINs), due to their flexibility and interpretability to capture the complex semantic relation among objects. To date, most HIN analysis still relies on hand-crafting meta-paths, which requires rich domain knowledge that is extremely difficult to obtain in complex, large-scale, and schema-rich HINs. In this work, we present a novel framework, Meta-path Discovery with Reinforcement Learning (MPDRL), to identify informative meta-paths from complex and large-scale HINs. To capture different semantic information between objects, we propose a novel multi-hop reasoning strategy in a reinforcement learning framework which aims to infer the next promising relation that links a source entity to a target entity. To improve the efficiency, moreover, we develop a type context representation embedded approach to scale the RL framework to handle million-scale HINs. As multi-hop reasoning generates rich meta-paths with various length, we further perform a meta-path induction step to summarize the important meta-paths using Lowest Common Ancestor principle. Experimental results on two large-scale HINs, Yago and NELL, validate our approach and demonstrate that our algorithm not only achieves superior performance in the link prediction task, but also identifies useful meta-paths that would have been ignored by human experts.


2021 ◽  
Vol 859 ◽  
pp. 80-115
Author(s):  
Pedro Ramaciotti Morales ◽  
Robin Lamarche-Perrin ◽  
Raphaël Fournier-S'niehotta ◽  
Rémy Poulain ◽  
Lionel Tabourier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document