Synthesis and Magnetic Properties of MnBi(LTP) Magnets With High-Energy Product

2014 ◽  
Vol 50 (11) ◽  
pp. 1-4 ◽  
Author(s):  
Ki Woong Moon ◽  
Kwang-Won Jeon ◽  
Min Kang ◽  
Min-Kyu Kang ◽  
Yangwoo Byun ◽  
...  
2014 ◽  
Vol 626 ◽  
pp. 317-322 ◽  
Author(s):  
Yen Ju Chen ◽  
Chao Cheng Chang ◽  
Po Jen Hsiao ◽  
Can Xun Chang

Traditionally, NdFeB magnets with high remanent flux density or high energy product could only be manufactured through altering the material compounds. In recent years, studies indicated that the magnet properties of NdFeB magnets could be improved through plastic deformation. These studies pointed out that the degree of plastic deformation is a key factor to improve magnetic properties. However, there are still many other process parameters that could affect the magnetic properties either positively or negatively. In this paper, process parameters such as strain, strain rate, and temperature are studied to illustrate their influences on the magnetic properties of NdFeB magnets. The magnetic property could be greatly improved when the preferred orientation appears on the microstructure of deformed NdFeB magnets. One of the experimental results showed that the energy product value had been increased by 76.7% when the effective strain value had reached 0.65. Experimental results also showed that strain rate is a dominating factor with regard to the flow stress of material. Through a proper combination of these parameters, one can obtain NdFeB magnets with their magnetic properties greatly improved.


2006 ◽  
Vol 45 ◽  
pp. 321-326 ◽  
Author(s):  
Cornel Miclea ◽  
Constantin Tanasoiu ◽  
Corneliu Florin Miclea ◽  
I. Spanulescu ◽  
Anca Gheorghiu ◽  
...  

Strontium hexaferrite nanopowders were prepared by mechanochemical synthesis from strontium and iron oxides using a high energy ball mill after 50 hours of milling. The synthesis process was checked by X-Ray diffractograms on powders milled for different times. The magnetic properties of hexaferrite nanopowder, both compacted and dispersed in a nonmagnetic matrix were determined. Severe stresses and structural deformations were introduced by mechanical processing, but they were eliminated, to a great extent, by a suitable heat treatment of the milled powder at 1000 oC for one and a half hour. Coercivities as high as 6600 Oe and specific magnetization of 65 emu/g were found for annealed noninteracting nanopowders. Such values are very near to the theoretical values for strontium ferrite. The magnetic behavior of such powders can be rather well described by the coherent rotation model of Stoner-Wohlfarth for an assembly of single domain particles oriented at random. Sintered bodies of such powders produced magnets with a high HC of 4600 Oe, a Br of 2100 Gs and an energy product maxim of approximately 1.85 MGOe.


2007 ◽  
Vol 40 (6) ◽  
pp. 1816-1820 ◽  
Author(s):  
S L Chen ◽  
Jian-Guo Zheng ◽  
W Liu ◽  
Z D Zhang

2019 ◽  
Vol 8 (5) ◽  
pp. 4995-5003 ◽  
Author(s):  
J.A. Betancourt-Cantera ◽  
F. Sánchez-De Jesús ◽  
A.M. Bolarín-Miró ◽  
G. Torres-Villaseñor ◽  
L.G. Betancourt-Cantera

Sign in / Sign up

Export Citation Format

Share Document