Feasibility Assessment and Design Optimization of a Clutchless Multimode Parallel Hybrid Electric Powertrain

2016 ◽  
Vol 21 (2) ◽  
pp. 774-786 ◽  
Author(s):  
Sun Je Kim ◽  
Kyung-Soo Kim ◽  
Dongsuk Kum
Author(s):  
Chenyu Yi ◽  
Bogdan Epureanu

Control and design optimization of hybrid electric powertrains is necessary to maximize the benefits of novel architectures. Previous studies have proposed multiple optimal and near-optimal control methods, approaches for design optimization, and ways to solve coupled design and control optimization problems for hybrid electric powertrains. This study presents control and design optimization of a novel hybrid electric powertrain architecture to evaluate its performance and potential using physics-based models for the electric machines, the battery and a near-optimal control, namely the equivalent consumption minimization strategy. Design optimization in this paper refers to optimizing the sizes of the powertrain components, i.e. electric machines, battery and final drive. The control and design optimization problem is formulated using nested approach with sequential quadratic programming as design optimization method. Metamodeling is applied to abstract the near-optimal powertrain control model to reduce the computational cost. Fuel economy, sizes of components, and consistency of city and highway fuel economy are reported to evaluate the performance of the powertrain designs. The results suggest an optimal powertrain design and control that grants good performance. The optimal design is shown to be robust and non-sensitive to slight component size changes when evaluated for the near-optimal control.


2019 ◽  
Vol 68 (12) ◽  
pp. 11523-11531 ◽  
Author(s):  
Bilal Kabalan ◽  
Emmanuel Vinot ◽  
Cheng Yuan ◽  
Rochdi Trigui ◽  
Clement Dumand ◽  
...  

Author(s):  
Hang Peng ◽  
Datong Qin ◽  
Jianjun Hu ◽  
Zhipeng Chen

Existing research on parallel hybrid electric vehicles (HEV) mainly focuses on optimizing the component sizes and control strategies of the single-motor parallel hybrid electric powertrain (SMPHP), and less analyzes the influence of powertrain configuration on the performance of the vehicle. Therefore, the influence of the power coupling type and transmission type of the powertrain configuration on the fuel economy and drivability performance of parallel HEVs is studied in this paper. Considering three types of powertrain topologies (P2 torque-coupled, P2 dual-mode coupled and P3 torque-coupled) and two types of automatic transmissions (DCT and CVT), six typical types of SMPHP configurations to be discussed are determined. To obtain their optimal fuel economy and drivability performance, a multi-objective optimization and analysis method based on dynamic programming and multi-objective particle swarm optimization algorithm is proposed to optimize the component sizes and control variables of powertrain configurations. Finally, the optimal performance and component size optimization results of six typical SMPHP configurations are analyzed and compared, and the influence of powertrain configuration on the performance and components sizing of the SMPHP is obtained, which contributes to the configuration design of the parallel hybrid electric powertrain.


Sign in / Sign up

Export Citation Format

Share Document