electric powertrains
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 46)

H-INDEX

10
(FIVE YEARS 3)

2022 ◽  
Vol 168 ◽  
pp. 104578
Author(s):  
B. Krüger ◽  
G. Keinprecht ◽  
G. Filomeno ◽  
D. Dennin ◽  
P. Tenberge

Author(s):  
Giampiero Mastinu ◽  
Laura Solari

Abstract Purpose The paper aims to promote the transition to low/zero emission of the local public transport, particularly, urban buses are taken into account. Method The life cycle assessment of electric and biomethane-fuelled urban buses is performed by exploiting SimaPro commercial software (v.9.1.1.). Attention is focused on powertrains. Both midpoint and endpoint analyses are performed. Referring to environmental impact, the best compressed biomethane gas (CBG) powertrain was compared to the best electric one. Additionally, the worst-case scenario has been considered for both CBG and electric powertrains. Results CBG powertrain outperforms the electric one if overall greenhouse gas emissions are considered. However, the electric powertrain seems promising for human health and ecosystem. Conclusions The environmental performance of the two powertrains is good. Both of the two technologies have strength and weak points that anyhow make them good candidates for a clean local public transport of the future. The analysis performed in the paper suggests a future investigation on hybrid electric-CBG powertrain. Actually, such a solution could benefit from both the strengths of the biomethane and the electric powertrain.


Author(s):  
Sven Köller ◽  
Vincent Schmitz

AbstractThe focus on the expansion of the electrification of vehicles becomes stronger. Thus, the development process of powertrains of those cars needs to be more dynamic to react to the new challenges. One way to accelerate the development is to automate predevelopment and evaluation at an early stage. An automated method to synthesize transmission topologies and pre-design gears for the generated topologies for electric vehicles is presented within this paper. The method contains two internal evaluations—one after the topology synthesis and the second after the initial design of the gears. The results of the method are gear ratios and gear data for the single transmission steps of each topology. The inputs and boundary conditions can be easily changed and fitted to specific requirements for all use-cases. Here, the process is explained, and the methods' results are validated using state-of-the-art passenger vehicle transmission. As for electric trucks, no state-of-the-art electric powertrains exist; the method is subsequently applied to find topologies for a heavy-duty truck. Extracts of the results are presented. The application for trucks is carried out within the publicly funded research project “Concept ELV2”. In general, the method is capable of synthesizing transmissions for any given vehicle and motor combination.


2021 ◽  
Vol 12 (4) ◽  
pp. 241
Author(s):  
Anton Karlsson ◽  
Mats Alaküla

An electric road system (ERS) enables transfer of electric energy to a moving vehicle, making it possible to reduce the capacity—and cost—of the battery and the need for static chargers. A conductive electric road allows for relatively low complexity whilst being able to provide high levels of power. When utilising a conductive electric road, safety precautions must be considered with regard to isolation between the charging supply (the electric road) and the vehicle’s traction voltage system (TVS), since no protective Earth connection can be guaranteed. Isolation can be achieved by separating the two systems galvanically or by double isolating the entire TVS and all equipment connected to it on-board the vehicle. This study used the experimental results from a previous paper to model and evaluate three different electric powertrains/charger topologies, including a novel integrated design fulfilling the required safety features. The models were used in a full vehicle model and further investigated in a city bus scenario in terms of how charging performance, energy consumption and battery ageing are affected by the aforementioned charging topologies and electric road characteristic. We discovered that charging topology has a strong influence on energy consumption, and that electric road characteristics have a strong influence on battery ageing.


2021 ◽  
Author(s):  
Joshua Kasitz ◽  
David Huitink

Abstract As aircrafts move toward electrification with the research and development of hybrid-electric powertrains, the focus has begun to shift to the reliability challenges of electronic devices subject to flight. Electronic components in aircraft applications are subject to two main sources of failure inducing stresses: the thermomechanical stresses that develop due to unequal coefficients of thermal expansion of different materials used in the components, and the stresses developing due to shocks and vibrations during flight as well as landing and takeoff. While the challenge of dealing with CTE mismatches is applicable to electronic devices in general, the ambient conditions surrounding the aircraft in flight, combined with weight and space constrains add significant logistical issues to any cooling mechanism. This paper will focus on the environmental influence on the thermal dissipation profile that will ultimately lead to CTE failures. The push toward more-electric-aircraft (MEA) increases the need to further advance the power and versatility of electronic cooling systems to adequately manage high density power modules, which until recently were not highly incorporated in aviation systems. Environmental conditions will play a large role in the design space and limitations of potential cooling solutions and will dictate the effectiveness of current thermal management systems. In arising scenarios where high-density electronics cannot be contained within a pressurized and temperature-controlled cabin, drastic pressure and temperature swings, facilitated by the external environment, will lead to an extra source of fluctuating stress on the cooling system. This is likely to be a prevalent factor in hybrid-electric and all-electric powertrains as requiring environmental controlled spaces for major components could be limited. This can easily be seen in current attempts to examine and redesign local cooling systems for electric motors in aviation. Representing just one of the major cooling requirements on an electric aircraft, motor cooling systems demonstrate the universal cooling problems limiting all aspects of the powertrains system. This paper aims to define the impact of the changing environment, through a flight profile of an aircraft, on high density electronic cooling systems by assessing the potential system stressors that significantly impact performance, efficiency, and reliability of the cooling systems. It will also utilize local cooling efforts for motors to relate the general problems to applicable design considerations that must be understood to further the performance capability of the overall propulsion system.


Author(s):  
Evgeniy Stolyarov ◽  
Maria Gulyaeva ◽  
Alecksey Anuchin ◽  
Alexandr Zharkov ◽  
Maxim Lashkevich ◽  
...  

2021 ◽  
pp. 143-170
Author(s):  
Ahmad S. Al-Adsani ◽  
Omid Beik

2021 ◽  
Vol 15 (2) ◽  
pp. 220-225
Author(s):  
Mario Hirz ◽  
Bernhard Walzel ◽  
Helmut Brunner

Modern industrial manufacturing involves several manually and automated driven vehicles - not only for logistics and production purposes, but also for services, maintenance, resources supply and cleaning. These different types of vehicles are increasingly driven by electric powertrains that operate in the production halls, warehouses and other involved areas. Today, electric charging of these mobile devices is accomplished mainly manually and by use of a number of different not standardized charging interfaces, which leads to increased time and cost efforts. The paper evaluates different charging technologies for the use in industrial environments and introduces a new approach for automated, robot-controlled charging of electric vehicles, which is based on a standardized charging interface. The technology has been developed to fully automated charge different types of cars and other vehicles and consists of a vision system to identify the vehicle and the charging connector position in combination with a fully-controlled robotic system that plugs-in and -off the charging connector. In this way, the system is universally applicable for different types of autonomously and manually driven vehicles in a professional context, e.g. in production, logistics and warehouses.


2021 ◽  
pp. 1-16
Author(s):  
Philipp Leise ◽  
Arved Eßer ◽  
Tobias Eichenlaub ◽  
Jean-Eric Schleiffer ◽  
Lena C. Altherr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document