Synthesizing Chest X-Ray Pathology for Training Deep Convolutional Neural Networks

2019 ◽  
Vol 38 (5) ◽  
pp. 1197-1206 ◽  
Author(s):  
Hojjat Salehinejad ◽  
Errol Colak ◽  
Tim Dowdell ◽  
Joseph Barfett ◽  
Shahrokh Valaee
Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 545 ◽  
Author(s):  
Hsin-Jui Chen ◽  
Shanq-Jang Ruan ◽  
Sha-Wo Huang ◽  
Yan-Tsung Peng

Automatically locating the lung regions effectively and efficiently in digital chest X-ray (CXR) images is important in computer-aided diagnosis. In this paper, we propose an adaptive pre-processing approach for segmenting the lung regions from CXR images using convolutional neural networks-based (CNN-based) architectures. It is comprised of three steps. First, a contrast enhancement method specifically designed for CXR images is adopted. Second, adaptive image binarization is applied to CXR images to separate the image foreground and background. Third, CNN-based architectures are trained on the binarized images for image segmentation. The experimental results show that the proposed pre-processing approach is applicable and effective to various CNN-based architectures and can achieve comparable segmentation accuracy to that of state-of-the-art methods while greatly expediting the model training by up to 20.74 % and reducing storage space for CRX image datasets by down to 94.6 % on average.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5940
Author(s):  
Natheer Khasawneh ◽  
Mohammad Fraiwan ◽  
Luay Fraiwan ◽  
Basheer Khassawneh ◽  
Ali Ibnian

The COVID-19 global pandemic has wreaked havoc on every aspect of our lives. More specifically, healthcare systems were greatly stretched to their limits and beyond. Advances in artificial intelligence have enabled the implementation of sophisticated applications that can meet clinical accuracy requirements. In this study, customized and pre-trained deep learning models based on convolutional neural networks were used to detect pneumonia caused by COVID-19 respiratory complications. Chest X-ray images from 368 confirmed COVID-19 patients were collected locally. In addition, data from three publicly available datasets were used. The performance was evaluated in four ways. First, the public dataset was used for training and testing. Second, data from the local and public sources were combined and used to train and test the models. Third, the public dataset was used to train the model and the local data were used for testing only. This approach adds greater credibility to the detection models and tests their ability to generalize to new data without overfitting the model to specific samples. Fourth, the combined data were used for training and the local dataset was used for testing. The results show a high detection accuracy of 98.7% with the combined dataset, and most models handled new data with an insignificant drop in accuracy.


Sign in / Sign up

Export Citation Format

Share Document