Multimode Coplanar Waveguide Cross-Junction: Equivalent Circuit Model and Air-Bridge Free Applications

2017 ◽  
Vol 65 (10) ◽  
pp. 3753-3760 ◽  
Author(s):  
Abdelhamid M. H. Nasr ◽  
Amr M. E. Safwat
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Victor Sanz ◽  
Angel Belenguer ◽  
Alejandro L. Borja ◽  
Joaquin Cascon ◽  
Hector Esteban ◽  
...  

A new equivalent circuit for a coplanar waveguide loaded with split ring resonators is presented. The traditional circuits that model these devices are only able to characterize the left-handed propagation band, and their response is very similar to the real one within a very limited bandwidth. In contrast, this proposed broadband equivalent circuit is able to portray not only the left-handed propagation band, but also the right-handed one that occurs at higher frequencies. Besides, the response of this kind of basic cells can be adjusted with the proposed circuit model in a bandwidth close to a decade.


2012 ◽  
Vol 132 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Satoshi Maruyama ◽  
Muneki Nakada ◽  
Makoto Mita ◽  
Takuya Takahashi ◽  
Hiroyuki Fujita ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1644
Author(s):  
Qian Zhang ◽  
Huijuan Liu ◽  
Tengfei Song ◽  
Zhenyang Zhang

A novel, improved equivalent circuit model of double-sided linear induction motors (DLIMs) is proposed, which takes the skin effect and the nonzero leakage reactance of the secondary, longitudinal, and transverse end effects into consideration. Firstly, the traditional equivalent circuit with longitudinal and transverse end effects are briefly reviewed. Additionally, the correction coefficients for longitudinal and transverse end effects derived by one-dimensional analysis models are given. Secondly, correction factors for skin effect, which reflects the inhomogeneous air gap magnetic field vertically, and the secondary leakage reactance are derived by the quasi-two-dimensional analysis model. Then, the proposed equivalent circuit is presented, and the excitation reactance and secondary resistance are modified by the correction coefficients derived from the three analytical models. Finally, a three-dimensional (3D) finite element model is used to verify the proposed equivalent circuit model under varying air gap width and frequency, and the results are also compared with that of the traditional equivalent circuit models. The calculated thrust characteristics by the proposed equivalent circuit and 3D finite element model are experimentally validated under a constant voltage–frequency drive.


2021 ◽  
Vol 31 (5) ◽  
pp. 1-5
Author(s):  
Chaemin Im ◽  
Geonyoung Kim ◽  
Jeseok Bang ◽  
Kibum Choi ◽  
Soobin An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document