mesh dependency
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
pp. 105678952110392
Author(s):  
De-Cheng Feng ◽  
Xiaodan Ren

This paper presents a comprehensive analysis of the mesh-dependency issue for both plain concrete and reinforced concrete (RC) members under uniaxial loading. The detailed mechanisms for each case are firstly derived, and the analytical and numerical strain energies for concrete in different cases are compared to explain the phenomena of mesh-dependency. It is found that the mesh-dependency will be relieved or even eliminated with the increasing of the reinforcing ratio. Meanwhile, a concept of the critical reinforcing ratio is proposed to identify the corresponding boundary of mesh-dependency of RC members. In order to verify the above findings, several illustrative examples are performed and discussed. Finally, to overcome the mesh-dependency issue for RC members with lower reinforcing ratios, we propose a unified regularization method that modifies both stress-strain relations of steel and concrete based on the strain energy equivalence. The method is also applied to the illustrative examples for validation, and the numerical results indicate that the developed method can obtain objective results for cases with different meshes and reinforcing ratios.


2021 ◽  
Vol 31 (5) ◽  
pp. 1-5
Author(s):  
Chaemin Im ◽  
Geonyoung Kim ◽  
Jeseok Bang ◽  
Kibum Choi ◽  
Soobin An ◽  
...  

2020 ◽  
Vol 10 (24) ◽  
pp. 9142
Author(s):  
Ozgur Aslan ◽  
Emin Bayraktar

This work aims at the unification of the thermodynamically consistent representation of the micromorphic theory and the microdamage approach for the purpose of modeling crack growth and damage regularization in crystalline solids. In contrast to the thermodynamical representation of the microdamage theory, micromorphic contribution to flow resistance is defined in a dual fashion as energetic and dissipative in character, in order to bring certain clarity and consistency to the modeling aspects. The approach is further extended for large deformations and numerically implemented in a commercial finite element software. Specific numerical model problems are presented in order to demonstrate the ability of the approach to regularize anisotropic damage fields for large deformations and eliminate mesh dependency.


2020 ◽  
Vol 1 ◽  
pp. 100006
Author(s):  
B. Lopes ◽  
M.R.T. Arruda ◽  
L. Almeida-Fernandes ◽  
L. Castro ◽  
N. Silvestre ◽  
...  

2019 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yang Xia ◽  
Pan Guo

Purpose Numerical instability such as spurious oscillation is an important problem in the simulation of heat wave propagation. The purpose of this study is to propose a time discontinuous Galerkin isogeometric analysis method to reduce numerical instability of heat wave propagation in the medium subjected to heat sources, particularly heat impulse. Design/methodology/approach The essential vectors of temperature and the temporal gradients are assumed to be discontinuous and interpolated individually in the discretized time domain. The isogeometric analysis method is applied to use its property of smooth description of the geometry and to eliminate the mesh-dependency. An artificial damping scheme with proportional stiffness matrix is brought into the final discretized form to reduce the numerical spurious oscillations. Findings The numerical spurious oscillations in the simulation of heat wave propagation are effectively eliminated. The smooth description of geometry with spline functions solves the mesh-dependency problem and improves the numerical precision. Originality/value The time discontinuous Galerkin method is applied within the isogeometric analysis framework. The proposed method is effective in the simulation of the wave propagation problems subjecting to impulse load with numerical stability and accuracy.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2736 ◽  
Author(s):  
Jae-Wook Jung ◽  
Sang Eon Lee ◽  
Jung-Wuk Hong

Simulation of the material failure under high strain rate conditions is one of the most difficult problems in the finite element analyses, and many researchers have tried to understand and reproduce dynamic material fracture. In this study, we investigate a failure criterion that minimizes the mesh dependency at high strain rates and incorporates the criterion into the Johnson-Cook constitutive relationship by developing a user-defined material model. Impact tests were performed using a gas-gun system in order to investigate the response of the 7075-T651 aluminum plate in high-speed collision. On the other hand, numerical simulations are carried out by considering various element sizes and the relationship between element size and failure strain is inversely obtained using numerical results. By accommodating the relationship into the damage model and implementing in the user-defined material model, mesh dependency is significantly reduced, and sufficient accuracy is achieved with alleviated computational cost than the existing damage model. This study suggests an element size-dependent damage criterion that is applicable for impact simulation and it is expected that the criterion is useful to obtain accurate impact responses with a small computational cost.


Sign in / Sign up

Export Citation Format

Share Document