scholarly journals A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC

Author(s):  
Giuseppe Di Guglielmo ◽  
Farah Fahim ◽  
Christian Herwig ◽  
Manuel Blanco Valentin ◽  
Javier Duarte ◽  
...  
2021 ◽  
pp. 1-12
Author(s):  
Gaurav Sarraf ◽  
Anirudh Ramesh Srivatsa ◽  
MS Swetha

With the ever-rising threat to security, multiple industries are always in search of safer communication techniques both in rest and transit. Multiple security institutions agree that any systems security can be modeled around three major concepts: Confidentiality, Availability, and Integrity. We try to reduce the holes in these concepts by developing a Deep Learning based Steganography technique. In our study, we have seen, data compression has to be at the heart of any sound steganography system. In this paper, we have shown that it is possible to compress and encode data efficiently to solve critical problems of steganography. The deep learning technique, which comprises an auto-encoder with Convolutional Neural Network as its building block, not only compresses the secret file but also learns how to hide the compressed data in the cover file efficiently. The proposed techniques can encode secret files of the same size as of cover, or in some sporadic cases, even larger files can be encoded. We have also shown that the same model architecture can theoretically be applied to any file type. Finally, we show that our proposed technique surreptitiously evades all popular steganalysis techniques.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Hongwei Li ◽  
Kaide Ren ◽  
Haiying Dong ◽  
Shuaibing Li

The rapid development of wind generation technology has boosted types of the new topology wind turbines. Among the recently invented new wind turbines, the front-end speed regulated (FSR) wind turbine has attracted a lot of attention. Unlike conventional wind turbine, the speed regulation of the FSR machines is realized by adjusting the guide vane angle of a hydraulic torque converter, which is converterless and much more grid-friendly as the electrically excited synchronous generator (EESG) is also adopted. Therefore, the drive chain control of the wind turbine owns the top priority. To ensure that the FSR wind turbine performs as a general synchronous generator, this paper firstly modeled the drive chain and then proposed to use the variable-universe fuzzy approach for the drive chain control. It helps the wind generator operate in a synchronous speed and outperform other types of wind turbines. The multipopulation genetic algorithm (MPGA) is adopted to intelligently optimize the parameters of the expansion factor of the designed variable-universe fuzzy controller (VUFC). The optimized VUFC is applied to the speed control of the drive chain of the FSR wind turbine, which effectively solves the contradiction between the low precision of the fuzzy controller and the number of rules in the fuzzy control and the control accuracy. Finally, the main shaft speed of the FSR wind turbine can reach a steady-state value around 1500 rpm. The response time of the results derived using VUFC, compared with that derived from a neural network controller, is only less than 0.5 second and there is no overshoot. The case study with the real machine parameter verifies the effectiveness of the proposal and results compared with conventional neural network controller, proving its outperformance.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jingfeng Yang ◽  
Nanfeng Zhang ◽  
Ming Li ◽  
Yanwei Zheng ◽  
Li Wang ◽  
...  

Due to the continuous progress in the field of vehicle hardware, the condition that a vehicle cannot load a complex algorithm no longer exists. At the same time, with the progress in the field of vehicle hardware, a number of studies have reported exponential growth in the actual operation. To solve the problem for a large number of data transmissions in an actual operation, wireless transmission is proposed for text information (including position information) on the basis of the principles of the maximum entropy probability and the neural network prediction model combined with the optimization of the Huffman encoding algorithm, from the exchange of data to the entire data extraction process. The test results showed that the text-type vehicle information based on a compressed algorithm to optimize the algorithm of data compression and transmission could effectively realize the data compression, achieve a higher compression rate and data transmission integrity, and after decompression guarantee no distortion. Therefore, it is important to improve the efficiency of vehicle information transmission, to ensure the integrity of information, to realize the vehicle monitoring and control, and to grasp the traffic situation in real time.


2020 ◽  
Vol 25 (2) ◽  
pp. 287-292
Author(s):  
Longhao Xie ◽  
Qing Zhao ◽  
Chunguang Ma ◽  
Binbin Liao ◽  
Jianjian Huo

Electromagnetic (EM) inversion is a quantitative imaging technique that can describe the dielectric constant distribution of a target based on the EM signals scattered from it. In this paper, a novel deep neural network (DNN) based methodology for ground penetrating radar (GPR) data inversion, known as the Ü-net is introduced. The proposed Ü-net consists of three parts: a data compression unit, U-net, and an output unit. The novel inversion approach, based on supervised learning, uses a neural network to generate the dielectric constant distribution from GPR data. The GPR data can be compressed and reshaped the size using data compression unit. The U-net maps the object features to the dielectric constant distribution. The output unit meshes the dielectric constant distribution more finely. A novel feature of the proposed methodology is the application of instance normalization (IN) to the DNN EM inversion method and a comparison of its performance to batch normalization (BN). The validity of this technique is confirmed by numerical simulations. The Mean-Square Error of the test data sets is 0.087. These simulations prove that the instance normalization is suitable for GPR data inversion. The proposed approach is promising for achieving quality dielectric constant images in real-time.


Sign in / Sign up

Export Citation Format

Share Document