Zero-shot Deep Domain Adaptation with Common Representation Learning

Author(s):  
Mohammed Kutbi ◽  
Kuan-Chuan Peng ◽  
Ziyan Wu
2020 ◽  
Vol 34 (04) ◽  
pp. 4320-4327 ◽  
Author(s):  
Songlei Jian ◽  
Liang Hu ◽  
Longbing Cao ◽  
Kai Lu

The cross-domain representation learning plays an important role in tasks including domain adaptation and transfer learning. However, existing cross-domain representation learning focuses on building one shared space and ignores the unlabeled data in the source domain, which cannot effectively capture the distribution and structure heterogeneities in cross-domain data. To address this challenge, we propose a new cross-domain representation learning approach: MUltiple Lipschitz-constrained AligNments (MULAN) on partially-labeled cross-domain data. MULAN produces two representation spaces: a common representation space to incorporate knowledge from the source domain and a complementary representation space to complement the common representation with target local topological information by Lipschitz-constrained representation transformation. MULAN utilizes both unlabeled and labeled data in the source and target domains to address distribution heterogeneity by Lipschitz-constrained adversarial distribution alignment and structure heterogeneity by cluster assumption-based class alignment while keeping the target local topological information in complementary representation by self alignment. Moreover, MULAN is effectively equipped with a customized learning process and an iterative parameter updating process. MULAN shows its superior performance on partially-labeled semi-supervised domain adaptation and few-shot domain adaptation and outperforms the state-of-the-art visual domain adaptation models by up to 12.1%.


2020 ◽  
Vol 160 ◽  
pp. 113635
Author(s):  
Shuai Yang ◽  
Yuhong Zhang ◽  
Hao Wang ◽  
Peipei Li ◽  
Xuegang Hu

2022 ◽  
pp. 1-38
Author(s):  
William Paul ◽  
Armin Hadzic ◽  
Neil Joshi ◽  
Fady Alajaji ◽  
Philippe Burlina

Abstract We propose a novel method for enforcing AI fairness with respect to protected or sensitive factors. This method uses a dual strategy performing training and representation alteration (TARA) for the mitigation of prominent causes of AI bias. It includes the use of representation learning alteration via adversarial independence to suppress the bias-inducing dependence of the data representation from protected factors and training set alteration via intelligent augmentation to address bias-causing data imbalance by using generative models that allow the fine control of sensitive factors related to underrepresented populations via domain adaptation and latent space manipulation. When testing our methods on image analytics, experiments demonstrate that TARA significantly or fully debiases baseline models while outperforming competing debiasing methods that have the same amount of information—for example, with (% overall accuracy, % accuracy gap) = (78.8, 0.5) versus the baseline method's score of (71.8, 10.5) for Eye-PACS, and (73.7, 11.8) versus (69.1, 21.7) for CelebA. Furthermore, recognizing certain limitations in current metrics used for assessing debiasing performance, we propose novel conjunctive debiasing metrics. Our experiments also demonstrate the ability of these novel metrics in assessing the Pareto efficiency of the proposed methods.


2021 ◽  
Author(s):  
◽  
Muhammad Ghifary

<p>Machine learning has achieved great successes in the area of computer vision, especially in object recognition or classification. One of the core factors of the successes is the availability of massive labeled image or video data for training, collected manually by human. Labeling source training data, however, can be expensive and time consuming. Furthermore, a large amount of labeled source data may not always guarantee traditional machine learning techniques to generalize well; there is a potential bias or mismatch in the data, i.e., the training data do not represent the target environment.  To mitigate the above dataset bias/mismatch, one can consider domain adaptation: utilizing labeled training data and unlabeled target data to develop a well-performing classifier on the target environment. In some cases, however, the unlabeled target data are nonexistent, but multiple labeled sources of data exist. Such situations can be addressed by domain generalization: using multiple source training sets to produce a classifier that generalizes on the unseen target domain. Although several domain adaptation and generalization approaches have been proposed, the domain mismatch in object recognition remains a challenging, open problem – the model performance has yet reached to a satisfactory level in real world applications.  The overall goal of this thesis is to progress towards solving dataset bias in visual object recognition through representation learning in the context of domain adaptation and domain generalization. Representation learning is concerned with finding proper data representations or features via learning rather than via engineering by human experts. This thesis proposes several representation learning solutions based on deep learning and kernel methods.  This thesis introduces a robust-to-noise deep neural network for handwritten digit classification trained on “clean” images only, which we name Deep Hybrid Network (DHN). DHNs are based on a particular combination of sparse autoencoders and restricted Boltzmann machines. The results show that DHN performs better than the standard deep neural network in recognizing digits with Gaussian and impulse noise, block and border occlusions.  This thesis proposes the Domain Adaptive Neural Network (DaNN), a neural network based domain adaptation algorithm that minimizes the classification error and the domain discrepancy between the source and target data representations. The experiments show the competitiveness of DaNN against several state-of-the-art methods on a benchmark object dataset.  This thesis develops the Multi-task Autoencoder (MTAE), a domain generalization algorithm based on autoencoders trained via multi-task learning. MTAE learns to transform the original image into its analogs in multiple related domains simultaneously. The results show that the MTAE’s representations provide better classification performance than some alternative autoencoder-based models as well as the current state-of-the-art domain generalization algorithms.  This thesis proposes a fast kernel-based representation learning algorithm for both domain adaptation and domain generalization, Scatter Component Analysis (SCA). SCA finds a data representation that trades between maximizing the separability of classes, minimizing the mismatch between domains, and maximizing the separability of the whole data points. The results show that SCA performs much faster than some competitive algorithms, while providing state-of-the-art accuracy in both domain adaptation and domain generalization.  Finally, this thesis presents the Deep Reconstruction-Classification Network (DRCN), a deep convolutional network for domain adaptation. DRCN learns to classify labeled source data and also to reconstruct unlabeled target data via a shared encoding representation. The results show that DRCN provides competitive or better performance than the prior state-of-the-art model on several cross-domain object datasets.</p>


Author(s):  
Xiaobin Chang ◽  
Yongxin Yang ◽  
Tao Xiang ◽  
Timothy M. Hospedales

In this paper, a unified approach is presented to transfer learning that addresses several source and target domain labelspace and annotation assumptions with a single model. It is particularly effective in handling a challenging case, where source and target label-spaces are disjoint, and outperforms alternatives in both unsupervised and semi-supervised settings. The key ingredient is a common representation termed Common Factorised Space. It is shared between source and target domains, and trained with an unsupervised factorisation loss and a graph-based loss. With a wide range of experiments, we demonstrate the flexibility, relevance and efficacy of our method, both in the challenging cases with disjoint label spaces, and in the more conventional cases such as unsupervised domain adaptation, where the source and target domains share the same label-sets.


Sign in / Sign up

Export Citation Format

Share Document