Active Queue Management for Flow Fairness and Stable Queue Length

2011 ◽  
Vol 22 (4) ◽  
pp. 571-579 ◽  
Author(s):  
Jong-hwan Kim ◽  
Hyunsoo Yoon ◽  
Ikjun Yeom
Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2077
Author(s):  
Mahmoud Baklizi

The current problem of packets generation and transformation around the world is router congestion, which then leads to a decline in the network performance in term of queuing delay (D) and packet loss (PL). The existing active queue management (AQM) algorithms do not optimize the network performance because these algorithms use static techniques for detecting and reacting to congestion at the router buffer. In this paper, a weight queue active queue management (WQDAQM) based on dynamic monitoring and reacting is proposed. Queue weight and the thresholds are dynamically adjusted based on the traffic load. WQDAQM controls the queue within the router buffer by stabilizing the queue weight between two thresholds dynamically. The WQDAQM algorithm is simulated and compared with the existing active queue management algorithms. The results reveal that the proposed method demonstrates better performance in terms mean queue length, D, PL, and dropping probability, compared to gentle random early detection (GRED), dynamic GRED, and stabilized dynamic GRED in both heavy or no-congestion cases. In detail, in a heavy congestion status, the proposed algorithm overperformed dynamic GRED (DGRED) by 13.3%, GRED by 19.2%, stabilized dynamic GRED (SDGRED) by 6.7% in term of mean queue length (mql). In terms of D in a heavy congestion status, the proposed algorithm overperformed DGRED by 13.3%, GRED by 19.3%, SDGRED by 6.3%. As for PL, the proposed algorithm overperformed DGRED by 15.5%, SDGRED by 19.8%, GRED by 86.3% in term of PL.


Author(s):  
Sana Sabah Sabry ◽  
Nada Mahdi Kaittan

<p>Congestion is one of the most important issues in communication networks which has attracted much research attention. To ensure a stable TCP network, we can use active queue management (AQM for early congestion detection and router queue length regulation. In this study, it was proposed to use the Grey Wolf Optimizer (GWO) algorithm in designing a fuzzy proportional integral (fuzzy-PI) controller as a novel AQM for internet routers congestion control and for achieving a low steady-state error and fast response. The suggested Fuzzy logic-based network traffic control strategy permit us to deploy linguistic knowledge for depicting the dynamics of probability marking functions and ensures a more accurate use of multiple inputs to depict the   the network’s state. The possibility of incorporating human knowledge into such a control strategy using Fuzzy logic control methodology was demonstrated. The postulated controller was compared to proportion integral (PI) through several MATLAB simulation scenarios. The results indicated the stability of the postulated controller and its ability to attain a faster response in a dynamic network with varying network load and target queue length.</p>


Sign in / Sign up

Export Citation Format

Share Document