Completely Independent Spanning Trees on BCCC Data Center Networks with an Application to Fault-Tolerant Routing

Author(s):  
Xiao-Yan Li ◽  
Wanling Lin ◽  
Ximeng Liu ◽  
Cheng-Kuan Lin ◽  
Kung-Jui Pai ◽  
...  
2018 ◽  
Vol 113 ◽  
pp. 109-118
Author(s):  
Yang Qin ◽  
Weihong Yang ◽  
Xiao Ai ◽  
Lingjian Chen

2010 ◽  
Vol 21 (01) ◽  
pp. 73-90 ◽  
Author(s):  
JINN-SHYONG YANG ◽  
JOU-MING CHANG ◽  
SHYUE-MING TANG ◽  
YUE-LI WANG

A recursive circulant graph G(N,d) has N = cdm vertices labeled from 0 to N - 1, where d ⩾ 2, m ⩾ 1, and 1 ⩽ c < d, and two vertices x,y ∈ G(N,d) are adjacent if and only if there is an integer k with 0 ⩽ k ⩽ ⌈ log d N⌉ - 1 such that x ± dk ≡ y ( mod N). With the aid of recursive structure, such class of graphs has many attractive features and was considered as a topology of interconnection networks for computing systems. The design of multiple independent spanning trees (ISTs) has many applications in network communication. For instance, it is useful for fault-tolerant broadcasting and secure message distribution. In the previous work of Yang et al. (2009), we provided a constructing scheme to build k ISTs on G(cdm,d) with d ⩾ 3, where k is the connectivity of G(cdm,d). However, the proposed constructing rules cannot be applied to the case of d = 2. For the integrity of solving the IST problem on recursive circulant graphs, this paper deals with the case of G(2m,2) using a set of different constructing rules. Especially, we show that the heights of ISTs for G(2m,2) are lower than the known optimal construction of hypercubes with the same number of vertices.


Author(s):  
Aymen Hasan Alawadi ◽  
Sándor Molnár

AbstractData center networks (DCNs) act as critical infrastructures for emerging technologies. In general, a DCN involves a multi-rooted tree with various shortest paths of equal length from end to end. The DCN fabric must be maintained and monitored to guarantee high availability and better QoS. Traditional traffic engineering (TE) methods frequently reroute large flows based on the shortest and least-congested paths to maintain high service availability. This procedure results in a weak link utilization with frequent packet reordering. Moreover, DCN link failures are typical problems. State-of-the-art approaches address such challenges by modifying the network components (switches or hosts) to discover and avoid broken connections. This study proposes Oddlab (Odds labels), a novel deployable TE method to guarantee the QoS of multi-rooted data center (DC) traffic in symmetric and asymmetric modes. Oddlab creatively builds a heuristic model for efficient flow scheduling and faulty link detection by exclusively using the gathered statistics from the DCN data plane, such as residual bandwidth and the number of installed elephant flows. Besides, the proposed method is implemented in an SDN-based DCN without altering the network components. Our findings indicate that Oddlab can minimize the flow completion time, maximize bisection bandwidth, improve network utilization, and recognize faulty links with sufficient accuracy to improve DC productivity.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xinxin Zhang ◽  
Li Xu ◽  
Aihua Li

As the core infrastructure of cloud computing, a large scale of the data center networks (DCNs), which consist of millions of servers with high capacity, suffer from node failure such that the reliability is deteriorated. Malicious group could inevitably compromise the quality and reliability of data; thus, how to ensure the security routing of data is an urgent practical problem. As models for large-scale DCNs, it is worth mentioning the balanced hypercube, which is well-known for its strong connectivity, regularity, and a smaller diameter. Each of which makes a balanced hypercube a trustworthy model to deal with data traffic and provides a certain degree of fault-tolerance as well. In this paper, we use the balanced hypercube as a model for the data center networks and design a reliable safety level by referring to different safety levels of related subgraph. This subgraph contains the source and destination nodes, and the shortest feasible paths are located so that the reliable transmission is achieved. Then, we get that the length of fault-tolerant safety routing of data center networks based on balanced hypercube is always no greater than the Hamming distance plus two. Experiment shows that our fault-tolerant security routing scheme is more effective in the same reliable network environment of DCNs.


2016 ◽  
Vol E99.B (11) ◽  
pp. 2361-2372 ◽  
Author(s):  
Chang RUAN ◽  
Jianxin WANG ◽  
Jiawei HUANG ◽  
Wanchun JIANG

Author(s):  
Jiawei Huang ◽  
Shiqi Wang ◽  
Shuping Li ◽  
Shaojun Zou ◽  
Jinbin Hu ◽  
...  

AbstractModern data center networks typically adopt multi-rooted tree topologies such leaf-spine and fat-tree to provide high bisection bandwidth. Load balancing is critical to achieve low latency and high throughput. Although the per-packet schemes such as Random Packet Spraying (RPS) can achieve high network utilization and near-optimal tail latency in symmetric topologies, they are prone to cause significant packet reordering and degrade the network performance. Moreover, some coding-based schemes are proposed to alleviate the problem of packet reordering and loss. Unfortunately, these schemes ignore the traffic characteristics of data center network and cannot achieve good network performance. In this paper, we propose a Heterogeneous Traffic-aware Partition Coding named HTPC to eliminate the impact of packet reordering and improve the performance of short and long flows. HTPC smoothly adjusts the number of redundant packets based on the multi-path congestion information and the traffic characteristics so that the tailing probability of short flows and the timeout probability of long flows can be reduced. Through a series of large-scale NS2 simulations, we demonstrate that HTPC reduces average flow completion time by up to 60% compared with the state-of-the-art mechanisms.


Sign in / Sign up

Export Citation Format

Share Document