strong connectivity
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 29)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xinxin Zhang ◽  
Li Xu ◽  
Aihua Li

As the core infrastructure of cloud computing, a large scale of the data center networks (DCNs), which consist of millions of servers with high capacity, suffer from node failure such that the reliability is deteriorated. Malicious group could inevitably compromise the quality and reliability of data; thus, how to ensure the security routing of data is an urgent practical problem. As models for large-scale DCNs, it is worth mentioning the balanced hypercube, which is well-known for its strong connectivity, regularity, and a smaller diameter. Each of which makes a balanced hypercube a trustworthy model to deal with data traffic and provides a certain degree of fault-tolerance as well. In this paper, we use the balanced hypercube as a model for the data center networks and design a reliable safety level by referring to different safety levels of related subgraph. This subgraph contains the source and destination nodes, and the shortest feasible paths are located so that the reliable transmission is achieved. Then, we get that the length of fault-tolerant safety routing of data center networks based on balanced hypercube is always no greater than the Hamming distance plus two. Experiment shows that our fault-tolerant security routing scheme is more effective in the same reliable network environment of DCNs.


Author(s):  
Davor Curic ◽  
Victorita E. Ivan ◽  
David T. Cuesta ◽  
Ingrid M. Esteves ◽  
Majid H. Mohajerani ◽  
...  

Abstract Observations of neurons in a resting brain and neurons in cultures often display spontaneous scale-free collective dynamics in the form of information cascades, also called “neuronal avalanches”. This has motivated the so called critical brain hypothesis which posits that the brain is self-tuned to a critical point or regime, separating exponentially-growing dynamics from quiescent states, to achieve optimality. Yet, how such optimality of information transmission is related to behaviour and whether it persists under behavioural transitions has remained a fundamental knowledge gap. Here, we aim to tackle this challenge by studying behavioural transitions in mice using two-photon calcium imaging of the retrosplenial cortex -- an area of the brain well positioned to integrate sensory, mnemonic, and cognitive information by virtue of its strong connectivity with the hippocampus, medial prefrontal cortex, and primary sensory cortices. Our work shows that the response of the underlying neural population to behavioural transitions can vary significantly between different sub-populations such that one needs to take the structural and functional network properties of these sub-populations into account to understand the properties at the total population level. Specifically, we show that the retrosplenial cortex contains at least one sub-population capable of switching between two different scale-free regimes, indicating an intricate relationship between behaviour and the optimality of neuronal response at the subgroup level. This asks for a potential reinterpretation of the emergence of self-organized criticality in neuronal systems.


2021 ◽  
Vol 2066 (1) ◽  
pp. 012063
Author(s):  
Zhonggang Hu

Abstract In this paper, we discuss some algebraic properties of Lattice valued finite state machine and prove that if there are homomorphic mapping satisfying certain conditions between two Lattice valued finite state machines, the first one is strongly connected (cycle), then then the second one is the same. And if the homomorphism is strongly homomorphic, one of the Lattice valued finite state machines is complete if and only if another Lattice valued finite state machine is complete. Discuss the completeness, strong connectivity, circulation and exchange capacity between the product of a Lattice valued finite state machine and the original Lattice valued finite state machine and get some results.


2021 ◽  
Author(s):  
Barbara Feldmeyer ◽  
Claudia Gstoettl ◽  
Jennifer Wallner ◽  
Evelien Jongepier ◽  
Alice Seguret ◽  
...  

The ecological success of social Hymenoptera (ants, bees, wasps) depends on the division of labour between the queen and workers. Each caste is highly specialized in their respective function in morphology, behaviour and life history traits, such as lifespan and fecundity. Despite strong defences against alien intruders, insect societies are vulnerable to social parasites, such as workerless inquilines or slave-making (dulotic) ants. Here, we investigate whether gene expression varies in parallel ways between slave-making ants and their host ants across five independent origins of ant slavery in the Formicoxenus-group of the ant tribe Crematogastrini. As caste differences are often less pronounced in slave-making ants than non-parasitic ants, we also compare the transcriptomes of queens and workers in these species. We demonstrate a substantial overlap in expression differences between queens and workers across taxa, irrespective of lifestyle. Caste affects the transcriptomes much more profoundly than lifestyle, as indicated by 37 times more genes being linked to caste than to lifestyle and by multiple caste-associated gene modules with strong connectivity. However, several genes and one gene module are linked to the slave-making lifestyle across the independent origins, pointing to some evolutionary convergence. Finally, we do not find evidence for an interaction between caste and lifestyle, indicating that caste differences remain consistent even when species switch to a parasitic lifestyle. Our findings are a strong indication for the existence of a core set of genes whose expression is linked to the queen and worker caste in this ant taxon, supporting the genetic-toolkit hypothesis.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ying Liu ◽  
Weili Lian ◽  
Xingcong Zhao ◽  
Qingting Tang ◽  
Guangyuan Liu

Music tempo is closely connected to listeners’ musical emotion and multifunctional neural activities. Music with increasing tempo evokes higher emotional responses and music with decreasing tempo enhances relaxation. However, the neural substrate of emotion evoked by dynamically changing tempo is still unclear. To investigate the spatial connectivity and temporal dynamic functional network connectivity (dFNC) of musical emotion evoked by dynamically changing tempo, we collected dynamic emotional ratings and conducted group independent component analysis (ICA), sliding time window correlations, and k-means clustering to assess the FNC of emotion evoked by music with decreasing tempo (180–65 bpm) and increasing tempo (60–180 bpm). Music with decreasing tempo (with more stable dynamic valences) evoked higher valence than increasing tempo both with stronger independent components (ICs) in the default mode network (DMN) and sensorimotor network (SMN). The dFNC analysis showed that with time-decreasing FNC across the whole brain, emotion evoked by decreasing music was associated with strong spatial connectivity within the DMN and SMN. Meanwhile, it was associated with strong FNC between the DMN–frontoparietal network (FPN) and DMN–cingulate-opercular network (CON). The paired t-test showed that music with a decreasing tempo evokes stronger activation of ICs within DMN and SMN than that with an increasing tempo, which indicated that faster music is more likely to enhance listeners’ emotions with multifunctional brain activities even when the tempo is slowing down. With increasing FNC across the whole brain, music with an increasing tempo was associated with strong connectivity within FPN; time-decreasing connectivity was found within CON, SMN, VIS, and between CON and SMN, which explained its unstable valence during the dynamic valence rating. Overall, the FNC can help uncover the spatial and temporal neural substrates of musical emotions evoked by dynamically changing tempi.


2021 ◽  
Vol 11 (7) ◽  
pp. 909
Author(s):  
Thien Nguyen ◽  
Emma E. Condy ◽  
Soongho Park ◽  
Bruce H. Friedman ◽  
Amir Gandjbakhche

Inhibitory control is a cognitive process to suppress prepotent behavioral responses to stimuli. This study aimed to investigate prefrontal functional connectivity during a behavioral inhibition task and its correlation with the subject’s performance. Additionally, we identified connections that are specific to the Go/No-Go task. The experiment was performed on 42 normal, healthy adults who underwent a vanilla baseline and a simple and emotional Go/No-Go task. Cerebral hemodynamic responses were measured in the prefrontal cortex using a 16-channel near infrared spectroscopy (NIRS) device. Functional connectivity was calculated from NIRS signals and correlated to the Go/No-Go performance. Strong connectivity was found in both the tasks in the right hemisphere, inter-hemispherically, and the left medial prefrontal cortex. Better performance (fewer errors, faster response) is associated with stronger prefrontal connectivity during the simple Go/No-Go in both sexes and the emotional Go/No-Go connectivity in males. However, females express a lower emotional Go/No-Go connectivity while performing better on the task. This study reports a complete prefrontal network during a simple and emotional Go/No-Go and its correlation with the subject’s performance in females and males. The results can be applied to examine behavioral inhibitory control deficits in population with neurodevelopmental disorders.


Author(s):  
Andrew T. Smith

AbstractThe response properties, connectivity and function of the cingulate sulcus visual area (CSv) are reviewed. Cortical area CSv has been identified in both human and macaque brains. It has similar response properties and connectivity in the two species. It is situated bilaterally in the cingulate sulcus close to an established group of medial motor/premotor areas. It has strong connectivity with these areas, particularly the cingulate motor areas and the supplementary motor area, suggesting that it is involved in motor control. CSv is active during visual stimulation but only if that stimulation is indicative of self-motion. It is also active during vestibular stimulation and connectivity data suggest that it receives proprioceptive input. Connectivity with topographically organized somatosensory and motor regions strongly emphasizes the legs over the arms. Together these properties suggest that CSv provides a key interface between the sensory and motor systems in the control of locomotion. It is likely that its role involves online control and adjustment of ongoing locomotory movements, including obstacle avoidance and maintaining the intended trajectory. It is proposed that CSv is best seen as part of the cingulate motor complex. In the human case, a modification of the influential scheme of Picard and Strick (Picard and Strick, Cereb Cortex 6:342–353, 1996) is proposed to reflect this.


2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Elisabeth Lobe ◽  
Lukas Schürmann ◽  
Tobias Stollenwerk

AbstractIn order to solve real-world combinatorial optimization problems with a D-Wave quantum annealer, it is necessary to embed the problem at hand into the D-Wave hardware graph, namely Chimera or Pegasus. Most hard real-world problems exhibit a strong connectivity. For the worst-case scenario of a complete graph, there exists an efficient solution for the embedding into the ideal Chimera graph. However, since real machines almost always have broken qubits, it is necessary to find an embedding into the broken hardware graph. We present a new approach to the problem of embedding complete graphs into broken Chimera graphs. This problem can be formulated as an optimization problem, more precisely as a matching problem with additional linear constraints. Although being NP-hard in general, it is fixed-parameter tractable in the number of inaccessible vertices in the Chimera graph. We tested our exact approach on various instances of broken hardware graphs, both related to real hardware and randomly generated. For fixed runtime, we were able to embed larger complete graphs compared to previous, heuristic approaches. As an extension, we developed a fast heuristic algorithm which enables us to solve even larger instances. We compared the performance of our heuristic and exact approaches.


2021 ◽  
Author(s):  
Matthew Jensen ◽  
Anastasia Tyryshkina ◽  
Lucilla Pizzo ◽  
Corrine Smolen ◽  
Maitreya Das ◽  
...  

ABSTRACTRecent studies have suggested that individual variants do not sufficiently explain the variable expressivity of phenotypes observed in complex disorders. For example, the 16p12.1 deletion is associated with developmental delay and neuropsychiatric features in affected individuals, but is inherited in >90% of cases from a mildly-affected parent. While children with the deletion are more likely to carry additional “second-hit” variants than their parents, the mechanisms for how these variants contribute to phenotypic variability are unknown. We performed detailed clinical assessments, whole-genome sequencing, and RNA sequencing of lymphoblastoid cell lines for 32 individuals in five large families with multiple members carrying the 16p12.1 deletion. We found that the deletion dysregulates multiple autism and brain development genes such as FOXP1, ANK3, and MEF2. Carrier children also showed expression changes that were inherited as well as de novo compared with their parents, which matched with 39/47 observed developmental phenotypes. We identified significant enrichments for 13/25 classes of “second-hit” variants in genes with expression changes, where 7/25 variant classes were only enriched when inherited from the non-carrier parent, including missense SNVs and large deletions. In 11 instances, including for ZEB2 and SYNJ1, gene expression was synergistically altered by both the deletion and inherited “second-hits” in carrier children. Finally, brain-specific interaction network analysis showed strong connectivity between genes carrying “second-hits” and genes with transcriptome alterations, including differential expression, alternative splicing, and allele-specific expression. Our study shows that family-based assessments of transcriptome data are highly relevant towards understanding the genetic mechanisms associated with complex disorders.


Sign in / Sign up

Export Citation Format

Share Document