Design and Analysis of User-Defined Constant Switching Frequency Current-Control-Based Four-Leg DSTATCOM

2009 ◽  
Vol 24 (9) ◽  
pp. 2148-2158 ◽  
Author(s):  
Vincent George ◽  
Mahesh K. Mishra
2013 ◽  
Vol 347-350 ◽  
pp. 610-616
Author(s):  
Jian Min Wang

In the paper the principle and performances of the pulsating current injection based sensorless control of permanent magnet synchronous motor (PMSM) are analyzed theoretically and investigated by simulations. In the analyses, the effects of the speed EMF terms and the deviation between the actual d-axis high-frequency current and the command, which results from the limited gain and bandwidth of the current control loop, are all taken into account. It is shown that the pulsating current injection method can achieve stable position estimation in a wide speed range. But appreciable position errors will result at high speeds due to the cross-coupling effects of the speed EMFs and the tracking error between the actual and command carrier current. In order to improve the performance, a modified scheme is proposed. Its validity is confirmed by simulations.


2016 ◽  
Vol 26 (05) ◽  
pp. 1650074 ◽  
Author(s):  
Hao Zhang ◽  
Shuai Dong ◽  
Weimin Guan ◽  
Ye Liu

In this paper, a unified averaged modeling method is proposed to investigate the fast-scale period-doubling bifurcation of a full-bridge integrated buck-boost inverter with peak current control. In order to increase the resolution of the conventional classic averaged model to half the switching frequency, sample-and-hold effect of inductor current is absorbed into the averaged model, i.e. the proposed unified averaged model can capture the high-frequency dynamical characteristics of the buck-boost inverter, which is both an extension and a modification of conventional averaged model. Based on the unified mode, fast-scale bifurcation is identified, and the corresponding bifurcation point is predicted with the help of the locus movement of all the poles, and their underlying mechanisms are revealed. Detailed analysis shows that the occurrence of high-frequency oscillation means fast-scale bifurcation, while the occurrence of low-frequency oscillation leads to slow-scale bifurcation. Finally, it is demonstrated that the unified averaged model can provide not only a general method to investigate both the slow- and fast-scale bifurcations in a unified framework but also a quite straightforward design-oriented method which can be directly applicable.


Sign in / Sign up

Export Citation Format

Share Document