An Integrated High-Performance Active Rectifier for Piezoelectric Vibration Energy Harvesting Systems

2012 ◽  
Vol 27 (2) ◽  
pp. 623-627 ◽  
Author(s):  
Yang Sun ◽  
Nguyen Huy Hieu ◽  
Chang-Jin Jeong ◽  
Sang-Gug Lee
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zhongsheng Chen ◽  
Bin Guo ◽  
Congcong Cheng ◽  
Hongwu Shi ◽  
Yongmin Yang

Nonlinear magnetic forces are always used to enlarge resonant bandwidth of vibration energy harvesting systems with piezoelectric cantilever beams. However, how to determine properly the distance between two magnets is one of the key engineering problems. In this paper, the Melnikov theory is introduced to overcome it. Firstly, the Melnikov state-space model of the nonlinear piezoelectric vibration energy harvesting (PVEH) system is built. Based on it, chaotic dynamics mechanisms of achieving broadband PVEH by nonlinearity are exposed by potential function of the unperturbed nonlinear PVEH system. Then the corresponding Melnikov function of the nonlinear PVEH system is defined, based on which two Melnikov necessary conditions of determining the distance are obtained. Finally, numerical simulations are done to testify the theoretic results. The results demonstrate that the distance is closely related to the excitation amplitude and frequency once geometric and material parameters are fixed. Under a single-frequency excitation, the nonlinear PVEH system can generate a periodic vibration around a stable point, a large-amplitude vibration around two stable points, or a chaotic vibration. The proposed method is very valuable for optimally designing and utilizing nonlinear broadband PVEH devices in engineering applications.


Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 44 ◽  
Author(s):  
Mario Mösch ◽  
Gerhard Fischerauer

Self-adaptive vibration energy harvesting systems vary their resonance frequency automatically to better exploit changing environmental conditions. The energy required for the adjustment is taken from the energy storage of the harvester module. The energy gained by an adjustment step has to exceed the energy expended on it to justify the adjustment. A smart self-adaptive system takes this into account and operates in a manner that maximizes the energy output. This paper presents a theory for the optimal operation of a vibration energy harvester with a passive resonance-frequency adjustment mechanism (one that only requires energy for the adjustment steps proper, but not during the hold phases between the steps). Several vibration scenarios are considered to derive a general guideline. It is shown that there exist conditions under which a narrowing of the adjustment bandwidth improves the system characteristics. The theory is applied to a self-adaptive energy harvesting system based on electromagnetic transduction with narrowband resonators. It is demonstrated that the novel optimum mode of operation increases the energy output by a factor of 3.6.


2019 ◽  
Vol 27 (9) ◽  
pp. 1968-1980
Author(s):  
马天兵 MA Tian-bing ◽  
陈南南 CHEN Nan-nan ◽  
吴晓东 WU Xiao-dong ◽  
杜 菲 DU Fei ◽  
丁永静 DING Yong-jing

2019 ◽  
Vol 7 (5) ◽  
pp. 1948-1960
Author(s):  
Yang Li ◽  
Changjun Xie ◽  
Shuhai Quan ◽  
Wenlian Li ◽  
Ying Shi

Energy ◽  
2019 ◽  
Vol 180 ◽  
pp. 737-750 ◽  
Author(s):  
Yi Li ◽  
Shengxi Zhou ◽  
Zhichun Yang ◽  
Tong Guo ◽  
Xutao Mei

Sign in / Sign up

Export Citation Format

Share Document