A performance-index guided continuation method for fast computation of saddle-node bifurcation in power systems

2003 ◽  
Vol 18 (2) ◽  
pp. 753-760 ◽  
Author(s):  
Ke Chen ◽  
A. Hussein ◽  
M.E. Bradley ◽  
Haibin Wan
2014 ◽  
Vol 756 ◽  
pp. 650-688 ◽  
Author(s):  
J. F. Torres ◽  
D. Henry ◽  
A. Komiya ◽  
S. Maruyama

AbstractNatural convection in an inclined cubical cavity heated from two opposite walls maintained at different temperatures and with adiabatic sidewalls is investigated numerically. The cavity is inclined by an angle $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\theta $ around a lower horizontal edge and the isothermal wall set at the higher temperature is the lower wall in the horizontal situation ($\theta = 0^\circ $). A continuation method developed from a three-dimensional spectral finite-element code is applied to determine the bifurcation diagrams for steady flow solutions. The numerical technique is used to study the influence of ${\theta }$ on the stability of the flow for moderate Rayleigh numbers in the range $\mathit{Ra} \leq 150\, 000$, focusing on the Prandtl number $\mathit{Pr} = 5.9$. The results show that the inclination breaks the degeneracy of the stable solutions obtained at the first bifurcation point in the horizontal cubic cavity: (i) the transverse stable rolls, whose rotation vector is in the same direction as the inclination vector ${\boldsymbol{\Theta}}$, start from $\mathit{Ra} \to 0$ forming a leading branch and becoming more predominant with increasing $\theta $; (ii) a disconnected branch consisting of transverse rolls, whose rotation vector is opposite to ${\boldsymbol{\Theta}}$, develops from a saddle-node bifurcation, is stabilized at a pitchfork bifurcation, but globally disappears at a critical inclination angle; (iii) the semi-transverse stable rolls, whose rotation axis is perpendicular to ${\boldsymbol{\Theta}}$ at $\theta \to 0^\circ $, develop from another saddle-node bifurcation, but the branch also disappears at a critical angle. We also found the stability thresholds for the stable diagonal-roll and four-roll solutions, which increase with $\theta $ until they disappear at other critical angles. Finally, the families of stable solutions are presented in the $\mathit{Ra}-\theta $ parameter space by determining the locus of the primary, secondary, saddle-node, and Hopf bifurcation points as a function of $\mathit{Ra}$ and $\theta $.


2006 ◽  
Vol 2006 ◽  
pp. 1-11 ◽  
Author(s):  
Luis Fernando Mello ◽  
Antonio Carlos Zambroni de Souza ◽  
Gerson Hiroshi Yoshinari ◽  
Camila Vasconcelos Schneider

This paper addresses the problem of voltage collapse in power systems. More precisely, we exhibit a voltage collapse in a power system with two buses. This study is carried out with the help of two approaches. The first is a dynamical approach where a saddle-node bifurcation is analyzed and the second is an algebraic approach. Both approaches deal with the static behavior of the power system, but some dynamic aspects may be observed. An equivalence between the algebraic and dynamical approaches is obtained. The need to use both models comes from the fact that they are usually exploited in the literature, but a deep theoretical justification is still pending. Such a justification is meant in this work.


2005 ◽  
Vol 125 (12) ◽  
pp. 1195-1201
Author(s):  
Naoto Yorino ◽  
Yoshifumi Zoka ◽  
Koichi Nakanishi ◽  
Yoshifumi Kamei ◽  
Hiroshi Okazaki

Sign in / Sign up

Export Citation Format

Share Document