An approach for real time voltage stability margin control via reactive power reserve sensitivities

2013 ◽  
Vol 28 (2) ◽  
pp. 615-625 ◽  
Author(s):  
Bruno Leonardi ◽  
Venkataramana Ajjarapu
2021 ◽  
Author(s):  
Umang Patel

Power system stability is gaining importance because of unusual growth in power system. Day by day use of nonlinear load and other power electronics devices created distortions in the system which creates problems of voltage instability. Voltage stability of system is major concerns in power system stability. When a transmission network is operated near to their voltage stability limit it is difficult to control active-reactive power of the system. Our objectives are the analysis of voltage stability margin and active-reactive power control in proposed system which includes model of STATCOM with aim to analyse its behavior to improve voltage stability margin and active-reactive power control of the system under unbalanced condition. The study has been carried out using MATLAB Simulation program on three phase system connected to unbalanced three phase load via long transmission network and results of voltage and active-reactive power are presented. In future work, we can do power flow calculation of large power system network and find the weakest bus of the system and by placing STATCOM at that bus we can improve over all stability of the system


2017 ◽  
Vol 5 (10) ◽  
pp. 375-389
Author(s):  
K. Lenin

In this paper, Aeriform Nebula Algorithm (ANA) has been used for solving the optimal reactive power dispatch problem. Aeriform Nebula Algorithm (ANA) is stirred from the deeds of cloud. ANA imitate the creation behavior, modify behavior and expand deeds of cloud. The projected Aeriform Nebula Algorithm (ANA) has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the superior performance of the proposed Aeriform Nebula Algorithm (ANA) in reducing the real power loss and voltage stability has been enhanced.


2014 ◽  
Vol 960-961 ◽  
pp. 1124-1127
Author(s):  
Si Yu Li ◽  
Jia Dong Huang ◽  
Cui Ma

Nowadays, unbalanced loads or nonlinear loads produce a bad effect on the power quality of utility mains. Also, it is necessary for reactive power to be compensated because the most of industrial loads is inductive and make a lagging displacement power factor. Reactive power compensation utilizing STATCOM is one of the most important methods to improve power quality. In this paper, the technical feature of STATCOM is introduced and then a comparison with SVC is made. The effect of STATCOM on static voltage stability in power systems has been studied. Based on PSD-BPA software, effect of STATCOM is determined. Static voltage stability margin enhancement using STATCOM and SVC is compared in the modified IEEE 14-bus test system. Test results show very encouraging result.


2017 ◽  
Vol 26 (10) ◽  
pp. 1750155 ◽  
Author(s):  
Biplab Bhattacharyya ◽  
Saurav Raj

In the present work, reactive power planning problem along with voltage stability margin is addressed by effective co-ordination of reactive power sources. Modal analysis and L-index methods are used to detect weak nodes of the system accordingly. Differential Evolution (DE) and Genetic Algorithm (GA)-based optimization techniques are applied for the proper co-ordination of Var sources under base and increased loading conditions maintaining voltage stability of the connected power network. The problem is multi-objective and IEEE 30 bus system is taken as the standard system. It is observed that modal analysis based detection of weak nodes are more effective than the L-index-based detection. Moreover, the DE-based optimization algorithm gives better result compared to GA-based approach in maximizing reactive power reserves.


Sign in / Sign up

Export Citation Format

Share Document