scholarly journals Mean-Conditional Value-at-Risk Optimal Energy Storage Operation in the Presence of Transaction Costs

2015 ◽  
Vol 30 (3) ◽  
pp. 1222-1232 ◽  
Author(s):  
Somayeh Moazeni ◽  
Warren B. Powell ◽  
Amir H. Hajimiragha
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Yi Zheng ◽  
Xiaoqing Bai

AbstractWind power's uncertainty is from the intermittency and fluctuation of wind speed, which brings a great challenge to solving the power system's dynamic economic dispatch problem. With the wind-storage combined system, this paper proposes a dynamic economic dispatch model considering AC optimal power flow based on Conditional Value-at-Risk ($$CVaR$$ CVaR ). Since the proposed model is hard to solve, we use the big-M method and second-order cone description technique to transform it into a trackable mixed-integer second-order conic programming (MISOCP) model. By comparing the dispatching cost of the IEEE 30-bus system and the IEEE 118-bus system at different confidence levels, it is indicated that $$CVaR$$ CVaR method can adequately estimate dispatching risk and assist decision-makers in making reasonable dispatching schedules according to their risk tolerance. Meanwhile, the optimal operational energy storage capacity and initial/final energy storage state can be determined by analyzing the dispatching cost risk under different storage capacities and initial/final states.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Meihua Wang ◽  
Cheng Li ◽  
Honggang Xue ◽  
Fengmin Xu

A portfolio rebalancing model with self-finance strategy and consideration of V-shaped transaction cost is presented in this paper. Our main contribution is that a new constraint is introduced to confirm that the rebalance necessity of the existing portfolio needs to be adjusted. The constraint is constructed by considering both the transaction amount and transaction cost without any additional supply to the investment amount. The V-shaped transaction cost function is used to calculate the transaction cost of the portfolio, and conditional value at risk (CVaR) is used to measure the risk of the portfolios. Computational tests on practical financial data show that the proposed model is effective and the rebalanced portfolio increases the expected return of the portfolio and reduces the CVaR risk of the portfolio.


2014 ◽  
Vol 16 (6) ◽  
pp. 3-29 ◽  
Author(s):  
Samuel Drapeau ◽  
Michael Kupper ◽  
Antonis Papapantoleon

Sign in / Sign up

Export Citation Format

Share Document