scholarly journals Fault Diagnosis of Electric Power Systems Based on Fuzzy Reasoning Spiking Neural P Systems

2015 ◽  
Vol 30 (3) ◽  
pp. 1182-1194 ◽  
Author(s):  
Tao Wang ◽  
Gexiang Zhang ◽  
Junbo Zhao ◽  
Zhengyou He ◽  
Jun Wang ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Guojiang Xiong ◽  
Dongyuan Shi ◽  
Lin Zhu ◽  
Xianzhong Duan

Fault diagnosis of power systems is an important task in power system operation. In this paper, fuzzy reasoning spiking neural P systems (FRSN P systems) are implemented for fault diagnosis of power systems for the first time. As a graphical modeling tool, FRSN P systems are able to represent fuzzy knowledge and perform fuzzy reasoning well. When the cause-effect relationship between candidate faulted section and protective devices is represented by the FRSN P systems, the diagnostic conclusion can be drawn by means of a simple parallel matrix based reasoning algorithm. Three different power systems are used to demonstrate the feasibility and effectiveness of the proposed fault diagnosis approach. The simulations show that the developed FRSN P systems based diagnostic model has notable characteristics of easiness in implementation, rapidity in parallel reasoning, and capability in handling uncertainties. In addition, it is independent of the scale of power system and can be used as a reliable tool for fault diagnosis of power systems.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Haina Rong ◽  
Kang Yi ◽  
Gexiang Zhang ◽  
Jianping Dong ◽  
Prithwineel Paul ◽  
...  

As an important variant of membrane computing models, fuzzy reasoning spiking neural P systems (FRSN P systems) were introduced to build a link between P systems and fault diagnosis applications. An FRSN P system offers an intuitive illustration based on a strictly mathematical expression, a good fault-tolerant capacity, a good description for the relationships between protective devices and faults, and an understandable diagnosis model-building process. However, the implementation of FRSN P systems is still at a manual process, which is a time-consuming and hard labor work, especially impossible to perform on large-scale complex power systems. This manual process seriously limits the use of FRSN P systems to diagnose faults in large-scale complex power systems and has always been a challenging and ongoing task for many years. In this work we develop an automatic implementation method for automatically fulfilling the hard task, named membrane computing fault diagnosis (MCFD) method. This is a very significant attempt in the development of FRSN P systems and even of the membrane computing applications. MCFD is realized by automating input and output, and diagnosis processes consists of network topology analysis, suspicious fault component analysis, construction of FRSN P systems for suspicious fault components, and fuzzy inference. Also, the feasibility of the FRSN P system is verified on the IEEE14, IEEE 39, and IEEE 118 node systems.


1998 ◽  
Vol 23 (1-3) ◽  
pp. 207-224 ◽  
Author(s):  
Patricia R.S Jota ◽  
Syed M Islam ◽  
Tony Wu ◽  
Gerard Ledwich

2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Agustín Flores ◽  
Eduardo Quiles ◽  
Emilio García ◽  
Francisco Morant ◽  
Antonio Correcher

This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.


Author(s):  
Tao Wang ◽  
Gexiang Zhang ◽  
Haina Rong ◽  
Mario J. Pérez-Jiménez

2020 ◽  
Vol 10 (20) ◽  
pp. 7011 ◽  
Author(s):  
Songhai Fan ◽  
Prithwineel Paul ◽  
Tianbao Wu ◽  
Haina Rong ◽  
Gexiang Zhang

Over the years, spiking neural P systems (SNPS) have grown into a popular model in membrane computing because of their diverse range of applications. In this paper, we give a comprehensive summary of applications of SNPS and its variants, especially highlighting power systems fault diagnoses with fuzzy reasoning SNPS. We also study the structure and workings of these models, their comparisons along with their advantages and disadvantages. We also study the implementation of these models in hardware. Finally, we discuss some new ideas which can further expand the scope of applications of SNPS models as well as their implementations.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Wei Liu ◽  
Tao Wang ◽  
Tianlei Zang ◽  
Zhu Huang ◽  
Jun Wang ◽  
...  

Power transmission networks play an important role in smart girds. Fast and accurate faulty-equipment identification is critical for fault diagnosis of power systems; however, it is rather difficult due to uncertain and incomplete fault alarm messages in fault events. This paper proposes a new fault diagnosis method of transmission networks in the framework of membrane computing. We first propose a class of spiking neural P systems with self-updating rules (srSNPS) considering biological apoptosis mechanism and its self-updating matrix reasoning algorithm. The srSNPS, for the first time, effectively unitizes the attribute reduction ability of rough sets and the apoptosis mechanism of biological neurons in a P system, where the apoptosis algorithm for condition neurons is devised to delete redundant information in fault messages. This simplifies the complexity of the srSNPS model and allows us to deal with the uncertainty and incompleteness of fault information in an objective way without using historical statistics and expertise. Then, the srSNPS-based fault diagnosis method is proposed. It is composed of the transmission network partition, the SNPS model establishment, the pulse value correction and computing, and the protection device behavior evaluation, where the first two components can be finished before failures to save diagnosis time. Finally, case studies based on the IEEE 14- and IEEE 118-bus systems verify the effectiveness and superiority of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document