Real-time Flexibility Quantification of a Building HVAC System for Peak Demand Reduction

Author(s):  
Guanyu Tian ◽  
Qun Zhou Sun ◽  
Wenyi Wang
2021 ◽  
pp. 127891
Author(s):  
Miguel A. Peinado-Guerrero ◽  
Jesus R. Villalobos ◽  
Patrick E. Phelan ◽  
Nicolas A. Campbell

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1195
Author(s):  
Ali Saberi Derakhtenjani ◽  
Andreas K. Athienitis

This paper presents control strategies to activate energy flexibility for zones with radiant heating systems in response to changes in electricity prices. The focus is on zones with radiant floor heating systems for which the hydronic pipes are located deep in the concrete and, therefore, there is a significant thermal lag. A perimeter zone test-room equipped with a hydronic radiant floor system in an environmental chamber is used as a case study. A low order thermal network model for the perimeter zone, validated with experimental measurements, is utilized to study various control strategies in response to changes in the electrical grid price signal, including short term (nearly reactive) changes of the order of 10–15 min notice. An index is utilized to quantify the building energy flexibility with the focus on peak demand reduction for specific periods of time when the electricity prices are higher than usual. It is shown that the developed control strategies can aid greatly in enhancing the zone energy flexibility and minimizing the cost of electricity and up to 100% reduction in peak power demand and energy consumption is attained during the high-price and peak-demand periods, while maintaining acceptable comfort conditions.


2018 ◽  
Vol 144 ◽  
pp. 365-385 ◽  
Author(s):  
Wenzhuo Li ◽  
Choongwan Koo ◽  
Seung Hyun Cha ◽  
Taehoon Hong ◽  
Jeongyoon Oh

Inventions ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 62
Author(s):  
Mahdiyeh Khodaparastan ◽  
Ahmed Mohamed

Energy storage technologies are developing rapidly, and their application in different industrial sectors is increasing considerably. Electric rail transit systems use energy storage for different applications, including peak demand reduction, voltage regulation, and energy saving through recuperating regenerative braking energy. In this paper, a comprehensive review of supercapacitors and flywheels is presented. Both are compared based on their general characteristics and performances, with a focus on their roles in electric transit systems when used for energy saving, peak demand reduction, and voltage regulation. A cost analysis is also included to provide initial guidelines on the selection of the appropriate technology for a given transit system.


Author(s):  
Wan Syakirah Wan Abdullah ◽  
Miszaina Osman ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Renuga Verayiah

<span style="font-size: 9pt; font-family: 'Times New Roman', serif;">Renewable Energy (RE) penetration is a new phenomenon in power systems. In the advent of high penetration of RE in the systems, several issues have to be addressed especially when it involves the stability and flexibility of the power systems. Battery Energy Storage System (BESS) has gained popularity due to its capability to store energy and to serve multiple purposes in solving various power system concerns. Additionally, several BESS can be combined to operate as Virtual Power Plant (VPP). This study will involve the design and implementation of BESS for five potential customer sites for the demonstration project and to be possibly integrated into one VPP system. The study is expected to demonstrate bill savings to the customers with BESS due to peak demand reduction and energy arbitrage savings.</span><table class="MsoNormalTable" style="width: 444.85pt; border-collapse: collapse; border: none; mso-border-alt: solid windowtext .5pt; mso-yfti-tbllook: 1184; mso-padding-alt: 0in 5.4pt 0in 5.4pt; mso-border-insideh: .5pt solid windowtext; mso-border-insidev: .5pt solid windowtext;" width="593" border="1" cellspacing="0" cellpadding="0"><tbody><tr style="mso-yfti-irow: 0; mso-yfti-firstrow: yes; mso-yfti-lastrow: yes; height: 63.4pt;"><td style="width: 290.6pt; border: none; border-top: solid windowtext 1.0pt; mso-border-top-alt: solid windowtext .5pt; padding: 0in 5.4pt 0in 5.4pt; height: 63.4pt;" valign="top" width="387"><p class="MsoNormal" style="margin-top: 6.0pt; text-align: justify;"><span style="font-size: 9.0pt; color: black; mso-bidi-font-style: italic;">Renewable Energy (RE) penetration is a new phenomenon in power systems. In the advent of high penetration of RE in the systems, several issues have to be addressed especially when it involves the stability and flexibility of the power systems. Battery Energy Storage System (BESS) has gained popularity due to its capability to store energy and to serve multiple purposes in solving various power system concerns. Additionally, several BESS can be combined to operate as Virtual Power Plant (VPP). This study will involve the design and implementation of BESS for five potential customer sites for the demonstration project and to be possibly integrated into one VPP system. The study is expected to demonstrate bill savings to the customers with BESS due to peak demand reduction and energy arbitrage savings.</span></p></td></tr></tbody></table>


Sign in / Sign up

Export Citation Format

Share Document